89
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuropsychiatric Comorbidity in Obesity: Role of Inflammatory Processes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuropsychiatric symptoms are frequent in obesity. In addition to their substantial economic and health impact, these symptoms significantly interfere with the quality of life and social function of obese individuals. While the pathophysiological mechanisms underlying obesity-related neuropsychiatric symptoms are still under investigation and remain to be clearly identified, there is increasing evidence for a role of inflammatory processes. Obesity is characterized by a chronic low-grade inflammatory state that is likely to influence neuropsychiatric status given the well-known and highly documented effects of inflammation on brain activity/function and behavior. This hypothesis is supported by recent findings emanating from clinical investigations in obese subjects and from experimentations conducted in animal models of obesity. These studies converge to show that obesity-related inflammatory processes, originating either from the adipose tissue or gut microbiota environment, spread to the brain where they lead to substantial changes in neurocircuitry, neuroendocrine activity, neurotransmitter metabolism and activity, and neurogenesis. Together, these alterations contribute to shape the propitious bases for the development of obesity-related neuropsychiatric comorbidities.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          A neurotrophic model for stress-related mood disorders.

          There is a growing body of evidence demonstrating that stress decreases the expression of brain-derived neurotrophic factor (BDNF) in limbic structures that control mood and that antidepressant treatment reverses or blocks the effects of stress. Decreased levels of BDNF, as well as other neurotrophic factors, could contribute to the atrophy of certain limbic structures, including the hippocampus and prefrontal cortex that has been observed in depressed subjects. Conversely, the neurotrophic actions of antidepressants could reverse neuronal atrophy and cell loss and thereby contribute to the therapeutic actions of these treatments. This review provides a critical examination of the neurotrophic hypothesis of depression that has evolved from this work, including analysis of preclinical cellular (adult neurogenesis) and behavioral models of depression and antidepressant actions, as well as clinical neuroimaging and postmortem studies. Although there are some limitations, the results of these studies are consistent with the hypothesis that decreased expression of BDNF and possibly other growth factors contributes to depression and that upregulation of BDNF plays a role in the actions of antidepressant treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reward, dopamine and the control of food intake: implications for obesity.

            The ability to resist the urge to eat requires the proper functioning of neuronal circuits involved in top-down control to oppose the conditioned responses that predict reward from eating the food and the desire to eat the food. Imaging studies show that obese subjects might have impairments in dopaminergic pathways that regulate neuronal systems associated with reward sensitivity, conditioning and control. It is known that the neuropeptides that regulate energy balance (homeostatic processes) through the hypothalamus also modulate the activity of dopamine cells and their projections into regions involved in the rewarding processes underlying food intake. It is postulated that this could also be a mechanism by which overeating and the resultant resistance to homoeostatic signals impairs the function of circuits involved in reward sensitivity, conditioning and cognitive control. Published by Elsevier Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss.

              In human obesity, the stroma vascular fraction (SVF) of white adipose tissue (WAT) is enriched in macrophages. These cells may contribute to low-grade inflammation and to its metabolic complications. Little is known about the effect of weight loss on macrophages and genes involved in macrophage attraction. We examined subcutaneous WAT (scWAT) of 7 lean and 17 morbidly obese subjects before and 3 months after bypass surgery. Immunomorphological changes of the number of scWAT-infiltrating macrophages were evaluated, along with concomitant changes in expression of SVF-overexpressed genes. The number of scWAT-infiltrating macrophages before surgery was higher in obese than in lean subjects (HAM56+/CD68+; 22.6 +/- 4.3 vs. 1.4 +/- 0.6%, P < 0.001). Typical "crowns" of macrophages were observed around adipocytes. Drastic weight loss resulted in a significant decrease in macrophage number (-11.63 +/- 2.3%, P < 0.001), and remaining macrophages stained positive for the anti-inflammatory protein interleukin 10. Genes involved in macrophage attraction (monocyte chemotactic protein [MCP]-1, plasminogen activator urokinase receptor [PLAUR], and colony-stimulating factor [CSF]-3) and hypoxia (hypoxia-inducible factor-1alpha [HIF-1alpha]), expression of which increases in obesity and decreases after surgery, were predominantly expressed in the SVF. We show that improvement of the inflammatory profile after weight loss is related to a reduced number of macrophages in scWAT. MCP-1, PLAUR, CSF-3, and HIF-1alpha may play roles in the attraction of macrophages in scWAT.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                15 May 2014
                2014
                : 5
                : 74
                Affiliations
                [1] 1UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), French National Institute for Agricultural Research (INRA) , Bordeaux, France
                [2] 2UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), University of Bordeaux , Bordeaux, France
                [3] 3Stress Research Institute (Stressforskningsinstitutet), Stockholm University , Stockholm, Sweden
                Author notes

                Edited by: Jacques Epelbaum, INSERM, France

                Reviewed by: Jacques Epelbaum, INSERM, France; Carole Rovere-Jovene, CNRS-University of Nice Sophia Antipolis, France

                *Correspondence: Lucile Capuron, UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), INRA, University of Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux, France e-mail: lucile.capuron@ 123456bordeaux.inra.fr

                This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology.

                Article
                10.3389/fendo.2014.00074
                4030152
                24860551
                484d6f29-fc22-40e2-a4c7-ab9f9c26bd5e
                Copyright © 2014 Castanon, Lasselin and Capuron.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 March 2014
                : 02 May 2014
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 139, Pages: 9, Words: 8945
                Categories
                Endocrinology
                Review Article

                Endocrinology & Diabetes
                obesity,inflammation,neuroinflammation,cytokines,gut-brain axis,mood,cognition,neuropsychiatric symptoms

                Comments

                Comment on this article