6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide.

      Water Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study evaluated the effectiveness of nanocrystalline titanium dioxide (TiO(2)) in removing arsenate [As(V)] and arsenite [As(III)] and in photocatalytic oxidation of As(III). Batch adsorption and oxidation experiments were conducted with TiO(2) suspensions prepared in a 0.04 M NaCl solution and in a challenge water containing the competing anions phosphate, silicate, and carbonate. The removal of As(V) and As(III) reached equilibrium within 4h and the adsorption kinetics were described by a pseudo-second-order equation. The TiO(2) was effective for As(V) removal at pH<8 and showed a maximum removal for As(III) at pH of about 7.5 in the challenge water. The adsorption capacity of the TiO(2) for As(V) and As(III) was much higher than fumed TiO(2) (Degussa P25) and granular ferric oxide. More than 0.5 mmol/g of As(V) and As(III) was adsorbed by the TiO(2) at an equilibrium arsenic concentration of 0.6mM. The presence of the competing anions had a moderate effect on the adsorption capacities of the TiO(2) for As(III) and As(V) in a neutral pH range. In the presence of sunlight and dissolved oxygen, As(III) (26.7 microM or 2mg/L) was completely converted to As(V) in a 0.2g/L TiO(2) suspension through photocatalytic oxidation within 25 min. The nanocrystalline TiO(2) is an effective adsorbent for As(V) and As(III) and an efficient photocatalyst.

          Related collections

          Author and article information

          Journal
          15896821
          10.1016/j.watres.2005.04.006

          Comments

          Comment on this article

          scite_