31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SOCS1 and -3 proteins are released by alveolar macrophages into exosomes and microparticles, respectively, which are then taken up by alveolar epithelial cells, resulting in inhibition of STAT signaling. This process was dampened by exposure to cigarette smoke and may thus be important in suppressing airway inflammation.

          Abstract

          JAK-STAT signaling mediates the actions of numerous cytokines and growth factors, and its endogenous brake is the family of SOCS proteins. Consistent with their intracellular roles, SOCS proteins have never been identified in the extracellular space. Here we report that alveolar macrophages can secrete SOCS1 and -3 in exosomes and microparticles, respectively, for uptake by alveolar epithelial cells and subsequent inhibition of STAT activation. Secretion is tunable and occurs both in vitro and in vivo. SOCS secretion into lung lining fluid was diminished by cigarette smoking in humans and mice. Secretion and transcellular delivery of vesicular SOCS proteins thus represent a new model for the control of inflammatory signaling, which is subject to dysregulation during states of inflammation.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Alveolar macrophages: plasticity in a tissue-specific context.

          Alveolar macrophages exist in a unique microenvironment and, despite historical evidence showing that they are in close contact with the respiratory epithelium, have until recently been investigated in isolation. The microenvironment of the airway lumen has a considerable influence on many aspects of alveolar macrophage phenotype, function and turnover. As the lungs adapt to environmental challenges, so too do alveolar macrophages adapt to accommodate the ever-changing needs of the tissue. In this Review, we discuss the unique characteristics of alveolar macrophages, the mechanisms that drive their adaptation and the direct and indirect influences of epithelial cells on them. We also highlight how airway luminal macrophages function as sentinels of a healthy state and how they do not respond in a pro-inflammatory manner to antigens that do not disrupt lung structure. The unique tissue location and function of alveolar macrophages distinguish them from other macrophage populations and suggest that it is important to classify macrophages according to the site that they occupy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biology of interleukin-10.

            Interleukin (IL)-10 is the most important cytokine with anti-inflammatory properties besides TGF-β and IL-35. It is produced by activated immune cells, in particular monocytes/macrophages and T cell subsets including Tr1, Treg, and Th1 cells. IL-10 acts through a transmembrane receptor complex, which is composed of IL-10R1 and IL-10R2, and regulates the functions of many different immune cells. In monocytes/macrophages, IL-10 diminishes the production of inflammatory mediators and inhibits antigen presentation, although it enhances their uptake of antigens. Additionally, IL-10 plays an important role in the biology of B cells and T cells. The special physiological relevance of this cytokine lies in the prevention and limitation of over-whelming specific and unspecific immune reactions and, in consequence, of tissue damage. At the same time, IL-10 strengthens the "scavenger"-function and contributes to induced tolerance. This review provides an overview about the cellular sources, molecular mechanisms, effects, and biological role of IL-10. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Immunologic aspects of chronic obstructive pulmonary disease.

                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                4 May 2015
                : 212
                : 5
                : 729-742
                Affiliations
                [1 ]Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and [2 ]Department of Microbiology and Immunology, University of Michigan Medical School ; and [3 ]Department of Environmental Health Sciences, School of Public Health; University of Michigan, Ann Arbor, MI 48109
                [4 ]Research Services and [5 ]Medical Services, Department of Veterans Affairs Health Care System, Ann Arbor, MI 48105
                Author notes
                CORRESPONDENCE Marc Peters-Golden: petersm@ 123456umich.edu
                Article
                20141675
                10.1084/jem.20141675
                4419346
                25847945
                4897b75d-248c-48ae-83c8-6c217b3f7c42
                © 2015 Bourdonnay et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 29 August 2014
                : 17 March 2015
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article