2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estimating the effects of stressors on the health, survival and reproduction of a critically endangered, long‐lived species

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantifying the cumulative effects of stressors on individuals and populations can inform the development of effective management and conservation strategies. We developed a Bayesian state–space model to assess the effects of multiple stressors on individual survival and reproduction. In the model, stressor effects on vital rates are mediated by changes in underlying health, allowing for the comparison of effect sizes while accounting for intrinsic factors that might affect an individual's vulnerability and resilience. We applied the model to a 50‐year dataset of sightings, calving events and stressor exposure of critically endangered North Atlantic right whales Eubalaena glacialis. The viability of this population is threatened by a complex set of stressors, including vessel strikes, entanglement in fishing gear and fluctuating prey availability. We estimated that blunt and deep vessel strike injuries and severe entanglement injuries had the largest effect on the health of exposed individuals, reinforcing the urgent need for mitigation measures. Prey abundance had a smaller but protracted effect on health across individuals, and estimated long‐term trends in survival and reproduction followed the trend of the prey index, highlighting that long‐term ecosystem‐based management strategies are also required. Our approach can be applied to quantify the effects of multiple stressors on any long‐lived species where suitable indicators of health and long‐term monitoring data are available.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment.

          Ecological risk assessors face increasing demands to assess more chemicals, with greater speed and accuracy, and to do so using fewer resources and experimental animals. New approaches in biological and computational sciences may be able to generate mechanistic information that could help in meeting these challenges. However, to use mechanistic data to support chemical assessments, there is a need for effective translation of this information into endpoints meaningful to ecological risk-effects on survival, development, and reproduction in individual organisms and, by extension, impacts on populations. Here we discuss a framework designed for this purpose, the adverse outcome pathway (AOP). An AOP is a conceptual construct that portrays existing knowledge concerning the linkage between a direct molecular initiating event and an adverse outcome at a biological level of organization relevant to risk assessment. The practical utility of AOPs for ecological risk assessment of chemicals is illustrated using five case examples. The examples demonstrate how the AOP concept can focus toxicity testing in terms of species and endpoint selection, enhance across-chemical extrapolation, and support prediction of mixture effects. The examples also show how AOPs facilitate use of molecular or biochemical endpoints (sometimes referred to as biomarkers) for forecasting chemical impacts on individuals and populations. In the concluding sections of the paper, we discuss how AOPs can help to guide research that supports chemical risk assessments and advocate for the incorporation of this approach into a broader systems biology framework.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interactions among ecosystem stressors and their importance in conservation.

            Interactions between multiple ecosystem stressors are expected to jeopardize biological processes, functions and biodiversity. The scientific community has declared stressor interactions-notably synergies-a key issue for conservation and management. Here, we review ecological literature over the past four decades to evaluate trends in the reporting of ecological interactions (synergies, antagonisms and additive effects) and highlight the implications and importance to conservation. Despite increasing popularity, and ever-finer terminologies, we find that synergies are (still) not the most prevalent type of interaction, and that conservation practitioners need to appreciate and manage for all interaction outcomes, including antagonistic and additive effects. However, it will not be possible to identify the effect of every interaction on every organism's physiology and every ecosystem function because the number of stressors, and their potential interactions, are growing rapidly. Predicting the type of interactions may be possible in the near-future, using meta-analyses, conservation-oriented experiments and adaptive monitoring. Pending a general framework for predicting interactions, conservation management should enact interventions that are robust to uncertainty in interaction type and that continue to bolster biological resilience in a stressful world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence that ship noise increases stress in right whales.

              Baleen whales (Mysticeti) communicate using low-frequency acoustic signals. These long-wavelength sounds can be detected over hundreds of kilometres, potentially allowing contact over large distances. Low-frequency noise from large ships (20-200 Hz) overlaps acoustic signals used by baleen whales, and increased levels of underwater noise have been documented in areas with high shipping traffic. Reported responses of whales to increased noise include: habitat displacement, behavioural changes and alterations in the intensity, frequency and intervals of calls. However, it has been unclear whether exposure to noise results in physiological responses that may lead to significant consequences for individuals or populations. Here, we show that reduced ship traffic in the Bay of Fundy, Canada, following the events of 11 September 2001, resulted in a 6 dB decrease in underwater noise with a significant reduction below 150 Hz. This noise reduction was associated with decreased baseline levels of stress-related faecal hormone metabolites (glucocorticoids) in North Atlantic right whales (Eubalaena glacialis). This is the first evidence that exposure to low-frequency ship noise may be associated with chronic stress in whales, and has implications for all baleen whales in heavy ship traffic areas, and for recovery of this endangered right whale population.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Oikos
                Oikos
                0030-1299
                1600-0706
                May 2023
                February 06 2023
                May 2023
                : 2023
                : 5
                Affiliations
                [1 ] Centre for Research into Ecological and Environmental Modelling, Univ. of St Andrews St Andrews UK
                [2 ] Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke Univ. Durham NC USA
                [3 ] Anderson Cabot Center for Ocean Life, New England Aquarium Boston MA USA
                [4 ] Dept of Statistical Science, Duke Univ. Durham NC USA
                [5 ] School of Earth, Ocean and Environment, Univ. of South Carolina Columbia SC USA
                [6 ] Biology Dept, Woods Hole Oceanographic Inst. Woods Hole MA USA
                [7 ] School of Biology, Scottish Oceans Inst., Univ. of St Andrews St Andrews UK
                Article
                10.1111/oik.09801
                48f6d479-4554-41fc-9f32-9e91c45853ee
                © 2023

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article