29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multifaceted approach to resveratrol bioactivity : Focus on antioxidant action, cell signaling and safety

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resveratrol (RVT) is a naturally occurring trihydroxy stilbene that displays a wide spectrum of physiological activity. Its ability to behave therapeutically as a component of red wine has attracted wide attention. The phenol acts as a protective agent involving various body constituents. Most attention has been given to beneficial effects in insults involving cancer, aging, cardiovascular system, inflammation and the central nervous system. One of the principal modes of action appears to be as antioxidant. Other mechanistic pathways entail cell signaling, apoptosis and gene expression. There is an intriguing dichotomy in relation to pro-oxidant property. Also discussed are metabolism, receptor binding, rationale for safety and suggestions for future work. This is the first comprehensive review of RVT based on a broad, unifying mechanism.

          Related collections

          Most cited references266

          • Record: found
          • Abstract: found
          • Book: not found

          Free Radicals in Biology and Medicine

          "This latest edition has been comprehensively rewritten and updated (over 80% of the text is new), whilst maintaining the clarity of its predecessor. There is expanded coverage of isoprostanes and related compounds, mechanisms of oxidative damage to DNA and proteins (and the repair of such damage), the free radical theory of ageing and the roles played by reactive species in signal transduction, cell death, human reproduction, and other important biological events. Greater emphasis has also been placed on the methods available to measure reactive species and oxidative damage (and their potential pitfalls), as well as the importance of antioxidants in the human diet." "This book is recommended as a comprehensive introduction to the field for students, clinicians and researchers, and an invaluable companion to all those interested in the role of free radicals in the life and medical sciences."--BOOK JACKET.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resveratrol stimulates AMP kinase activity in neurons.

            Resveratrol is a polyphenol produced by plants that has multiple beneficial activities similar to those associated with caloric restriction (CR), such as increased life span and delay in the onset of diseases associated with aging. CR improves neuronal health, and the global beneficial effects of CR have been postulated to be mediated by the nervous system. One key enzyme thought to be activated during CR is the AMP-activated kinase (AMPK), a sensor of cellular energy levels. AMPK is activated by increases in the cellular AMP:ATP ratio, whereupon it functions to help preserve cellular energy. In this regard, the regulation of dietary food intake by hypothalamic neurons is mediated by AMPK. The suppression of nonessential energy expenditure by activated AMPK along with the CR mimetic and neuroprotective properties of resveratrol led us to hypothesize that neuronal activation of AMPK could be an important component of resveratrol activity. Here, we show that resveratrol activated AMPK in Neuro2a cells and primary neurons in vitro as well as in the brain. Resveratrol and the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) promoted robust neurite outgrowth in Neuro2a cells, which was blocked by genetic and pharmacologic inhibition of AMPK. Resveratrol also stimulated mitochondrial biogenesis in an AMPK-dependent manner. Resveratrol-stimulated AMPK activity in neurons depended on LKB1 activity but did not require the NAD-dependent protein deacetylase SIRT1 during this time frame. These findings suggest that neuronal activation of AMPK by resveratrol could affect neuronal energy homeostasis and contribute to the neuroprotective effects of resveratrol.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of inflammation and redox signaling by dietary polyphenols.

              Reactive oxygen species (ROS) play a key role in enhancing the inflammation through the activation of NF-kappaB and AP-1 transcription factors, and nuclear histone acetylation and deacetylation in various inflammatory diseases. Such undesired effects of oxidative stress have been found to be controlled by the antioxidant and/or anti-inflammatory effects of dietary polyphenols such as curcumin (diferuloylmethane, a principal component of turmeric) and resveratrol (a flavonoid found in red wine). The phenolic compounds in fruits, vegetables, tea and wine are mostly derivatives, and/or isomers of flavones, isoflavones, flavonols, catechins, tocopherols, and phenolic acids. Polyphenols modulate important cellular signaling processes such as cellular growth, differentiation and host of other cellular features. In addition, they modulate NF-kappaB activation, chromatin structure, glutathione biosynthesis, nuclear redox factor (Nrf2) activation, scavenge effect of ROS directly or via glutathione peroxidase activity and as a consequence regulate inflammatory genes in macrophages and lung epithelial cells. However, recent data suggest that dietary polyphenols can work as modifiers of signal transduction pathways to elicit their beneficial effects. The effects of polyphenols however, have been reported to be more pronounced in vitro using high concentrations which are not physiological in vivo. This commentary discusses the recent data on dietary polyphenols in the control of signaling and inflammation particularly during oxidative stress, their metabolism and bioavailability.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Landes Bioscience
                1942-0900
                1942-0994
                Mar-Apr 2010
                : 3
                : 2
                : 86-100
                Affiliations
                [1 ]Department of Chemistry; San Diego State University; San Diego, CA USA
                [2 ]Centro de Graduados e Investigación del Instituto Tecnológico de Tijuana; Tijuana, BC Mexico
                Author notes
                Correspondence to: Peter Kovacic; Email: pkovacic@ 123456sundown.sdsu.edu
                Article
                10.4161/oxim.3.2.3
                2952093
                20716933
                491511f3-7f03-4b7d-ac5d-07aea8833520
                Copyright © 2010 Landes Bioscience
                History
                : 18 December 2009
                : 6 January 2010
                : 7 January 2010
                Categories
                Reviews

                Molecular medicine
                bioactivity,safety,antioxidant,mechanism,cell signaling,resveratrol,metabolism
                Molecular medicine
                bioactivity, safety, antioxidant, mechanism, cell signaling, resveratrol, metabolism

                Comments

                Comment on this article