15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quantification of [11C]PIB PET for Imaging Myelin in the Human Brain: A Test—Retest Reproducibility Study in High-Resolution Research Tomography

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An accurate in vivo measure of myelin content is essential to deepen our insight into the mechanisms underlying demyelinating and dysmyelinating neurological disorders, and to evaluate the effects of emerging remyelinating treatments. Recently [(11)C]PIB, a positron emission tomography (PET) tracer originally conceived as a beta-amyloid marker, has been shown to be sensitive to myelin changes in preclinical models and humans. In this work, we propose a reference-region methodology for the voxelwise quantification of brain white-matter (WM) binding for [(11)C]PIB. This methodology consists of a supervised procedure for the automatic extraction of a reference region and the application of the Logan graphical method to generate distribution volume ratio (DVR) maps. This approach was assessed on a test-retest group of 10 healthy volunteers using a high-resolution PET tomograph. The [(11)C]PIB PET tracer binding was shown to be up to 23% higher in WM compared with gray matter, depending on the image reconstruction. The DVR estimates were characterized by high reliability (outliers <1%) and reproducibility (intraclass correlation coefficient (ICC) >0.95). [(11)C]PIB parametric maps were also found to be significantly correlated (R(2)>0.50) to mRNA expressions of the most represented proteins in the myelin sheath. On the contrary, no correlation was found between [(11)C]PIB imaging and nonmyelin-associated proteins.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Myelin basic protein: a multifunctional protein.

          J Boggs (2006)
          Myelin basic protein (MBP), the second most abundant protein in central nervous system myelin, is responsible for adhesion of the cytosolic surfaces of multilayered compact myelin. A member of the 'intrinsically disordered' or conformationally adaptable protein family, it also appears to have several other functions. It can interact with a number of polyanionic proteins including actin, tubulin, Ca(2+)-calmodulin, and clathrin, and negatively charged lipids, and acquires structure on binding to them. It may act as a membrane actin-binding protein, which might allow it to participate in transmission of extracellular signals to the cytoskeleton in oligodendrocytes and tight junctions in myelin. Some size isoforms of MBP are transported into the nucleus and thus they may also bind polynucleotides. Extracellular signals received by myelin or cultured oligodendrocytes cause changes in phosphorylation of MBP, suggesting that MBP is also involved in signaling. Further study of this very abundant protein will reveal how it is utilized by the oligodendrocyte and myelin for different purposes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B.

            A valid quantitative imaging method for the measurement of amyloid deposition in humans could improve Alzheimer's disease (AD) diagnosis and antiamyloid therapy assessment. Our group developed Pittsburgh Compound-B (PIB), an amyloid-binding radiotracer, for positron emission tomography (PET). The current study was aimed to further validate PIB PET through quantitative imaging (arterial input) and inclusion of subjects with mild cognitive impairment (MCI). Pittsburgh Compound-B studies were performed in five AD, five MCI, and five control subjects and five subjects were retested within 20 days. Magnetic resonance images were acquired for partial volume correction and region-of-interest definition (e.g., posterior cingulate: PCG; cerebellum: CER). Data were analyzed using compartmental and graphical approaches. Regional distribution volume (DV) values were normalized to the reference region (CER) to yield DV ratios (DVRs). Good agreement was observed between compartmental and Logan DVR values (e.g., PCG: r=0.89, slope=0.91); the Logan results were less variable. Nonspecific PIB retention was similar across subjects (n=15, Logan CER DV: 3.63+/-0.48). Greater retention was observed in AD cortical areas, relative to controls (P<0.05). The PIB retention in MCI subjects appeared either 'AD-like' or 'control-like'. The mean test/retest variation was approximately 6% in primary areas-of-interest. The Logan analysis was the method-of-choice for the PIB PET data as it proved stable, valid, and promising for future larger studies and voxel-based statistical analyses. This study also showed that it is feasible to perform quantitative PIB PET imaging studies that are needed to validate simpler methods for routine use across the AD disease spectrum.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Demyelinating diseases.

              S Love (2006)
              A diagnosis of demyelination carries important therapeutic and prognostic implications. In most cases the diagnosis is made clinically, and involvement of the histopathologist is largely confined to postmortem confirmation and clinicopathological correlation. However, every now and then, accurate diagnosis of the presence or cause of demyelination before death hinges on the histopathological assessment. Recognition of demyelination depends on an awareness of this as a diagnostic possibility, and on the use of appropriate tinctorial and immunohistochemical stains to identify myelin, axons and inflammatory cells. In biopsy specimens, the critical distinction is usually from ischaemic or neoplastic disease, and the types of demyelinating disease most likely to be encountered are multiple sclerosis, acute-disseminated encephalomyelitis, progressive multifocal leucoencephalopathy and extrapontine myelinolysis. Interpretation of the pathology has to be made in the context of the clinical, radiological and biochemical findings. Freezing of a small amount of fresh tissue allows for later virological studies, and electron microscopy is occasionally helpful for demonstration of viral particles.
                Bookmark

                Author and article information

                Journal
                Journal of Cerebral Blood Flow & Metabolism
                J Cereb Blood Flow Metab
                Springer Nature
                0271-678X
                1559-7016
                June 10 2015
                June 10 2015
                : 35
                : 11
                : 1771-1782
                Article
                10.1038/jcbfm.2015.120
                4635232
                26058700
                495ef281-fbb7-4afc-aa26-05b09b5d448a
                © 2015
                History

                Comments

                Comment on this article