1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Inactivation of Human CYP2E1 by Phenethyl Isothiocyanate, a Naturally Occurring Chemopreventive Agent, and Its Oxidative Bioactivation

      , , ,
      Drug Metabolism and Disposition
      American Society for Pharmacology & Experimental Therapeutics (ASPET)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms.

            Chemoprevention is a cancer preventive strategy to inhibit, delay or reverse carcinogenesis using naturally occurring or synthetic chemical agents. Numerous epidemiological studies as well as experimental animal studies clearly demonstrate that high intake of cruciferous vegetables protects against tumorigenesis. Thus, cruciferous vegetables have been of great interest for potential use in the chemoprevention of cancer. Cruciferous vegetables are rich source of glucosinolates, which are degraded into isothiocyanates by enzymatic action of plant-specific myrosinase or intestinal flora in the body. It appears that significant portion of the chemopreventive effects of isothiocyanates may be associated with the inhibition of the metabolic activation of carcinogens by cytochrome P450s (Phase I), coupled with strong induction of Phase II detoxifying and cellular defensive enzymes. Inductions of Phase II cellular enzymes are largely mediated by the antioxidant responsive element (ARE), which is regulated by the transcriptional factor, Nrf2. Additional potent regulatory mechanisms of Nrf2 include the different signaling kinase pathways (MAPK, PI3K, PKC and PERK) as well as other non-kinase dependent mechanisms. Moreover, apoptosis and cell cycle perturbations appear to be yet another potential chemopreventive mechanisms elicited by isothiocyanates, especially with respect to the effects on pre-initiated or initiated tumor cells. Finally, modulation of other critical signaling mediators, including the NF-kappaB and AP-1 by a wide array of chemopreventive agents including isothiocyanates may also contribute to the overall chemopreventive mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes.

              An acetyltransferase-overexpressing strain of Salmonella typhimurium (NM2009) has been used to investigate roles of human liver microsomal cytochrome P450 (P450) enzymes in the activation of carcinogenic nitrosamine derivatives, including N-nitrosodialkylamines and tobacco-smoke-related nitrosamines, to genotoxic products. Studies employing correlation of activities with several P450-dependent monooxygenase reactions in different human liver samples, inhibition of microsomal activities by antibodies raised against human P450 enzymes and by specific P450 inhibitors, and reconstitution of activities with purified P450 enzymes suggest that the tobacco-smoke-related nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and N-nitrosonornicotine (NNN) as well as N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) are oxidized to genotoxic products by different P450 enzymes, particularly P450 2E1 and 2A6. The activation of NDMA and NNN by liver microsomes was suggested to be catalyzed more actively by P450 2E1 than by other P450 enzymes because the activities were well correlated with NDMA N-demethylation and aniline p-hydroxylation in different human samples, and purified P450 2E1 had the highest activities in reconstituted monooxygenase systems. The relatively high contribution of P450 2A6 to the activation of NDEA and NNK was supported by the correlation seen with coumarin 7-hydroxylation in human liver microsomes, and antibodies raised against P450 2A6 inhibited both activities by approximately 50%. P450 3A4, 2D6 and 2C enzymes appear not to be extensively involved in the activation of these nitrosamines as judged by several criteria examined. Thus, this work indicates that several P450 enzymes, particularly P450 2E1 and 2A6, catalyze metabolic activation of nitrosamine derivatives including N-nitrosodialkylamines and tobacco-smoke-related nitrosamines in human liver microsomes.
                Bookmark

                Author and article information

                Journal
                Drug Metabolism and Disposition
                Drug Metab Dispos
                American Society for Pharmacology & Experimental Therapeutics (ASPET)
                0090-9556
                1521-009X
                March 13 2013
                April 2013
                April 2013
                January 31 2013
                : 41
                : 4
                : 858-869
                Article
                10.1124/dmd.112.050609
                23371965
                496d3693-e503-4204-97b8-3f5fa410f955
                © 2013
                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article