4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome view of a killer: African swine fever virus

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          African swine fever virus (ASFV) represents a severe threat to global agriculture with the world's domestic pig population reduced by a quarter following recent outbreaks in Europe and Asia. Like other nucleocytoplasmic large DNA viruses, ASFV encodes a transcription apparatus including a eukaryote-like RNA polymerase along with a combination of virus-specific, and host-related transcription factors homologous to the TATA-binding protein (TBP) and TFIIB. Despite its high impact, the molecular basis and temporal regulation of ASFV transcription is not well understood. Our lab recently applied deep sequencing approaches to characterise the viral transcriptome and gene expression during early and late ASFV infection. We have characterised the viral promoter elements and termination signatures, by mapping the RNA-5′ and RNA-3′ termini at single nucleotide resolution. In this review, we discuss the emerging field of ASFV transcripts, transcription, and transcriptomics.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Database resources of the National Center for Biotechnology.

          D Wheeler (2003)
          In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, PubMed, PubMed Central (PMC), LocusLink, the NCBITaxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR (e-PCR), Open Reading Frame (ORF) Finder, References Sequence (RefSeq), UniGene, HomoloGene, ProtEST, Database of Single Nucleotide Polymorphisms (dbSNP), Human/Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes and related tools, the Map Viewer, Model Maker (MM), Evidence Viewer (EV), Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), and the Conserved Domain Architecture Retrieval Tool (CDART). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolutionary genomics of nucleo-cytoplasmic large DNA viruses.

            A previous comparative-genomic study of large nuclear and cytoplasmic DNA viruses (NCLDVs) of eukaryotes revealed the monophyletic origin of four viral families: poxviruses, asfarviruses, iridoviruses, and phycodnaviruses [Iyer, L.M., Aravind, L., Koonin, E.V., 2001. Common origin of four diverse families of large eukaryotic DNA viruses. J. Virol. 75 (23), 11720-11734]. Here we update this analysis by including the recently sequenced giant genome of the mimiviruses and several additional genomes of iridoviruses, phycodnaviruses, and poxviruses. The parsimonious reconstruction of the gene complement of the ancestral NCLDV shows that it was a complex virus with at least 41 genes that encoded the replication machinery, up to four RNA polymerase subunits, at least three transcription factors, capping and polyadenylation enzymes, the DNA packaging apparatus, and structural components of an icosahedral capsid and the viral membrane. The phylogeny of the NCLDVs is reconstructed by cladistic analysis of the viral gene complements, and it is shown that the two principal lineages of NCLDVs are comprised of poxviruses grouped with asfarviruses and iridoviruses grouped with phycodnaviruses-mimiviruses. The phycodna-mimivirus grouping was strongly supported by several derived shared characters, which seemed to rule out the previously suggested basal position of the mimivirus [Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H., La Scola, B., Suzan, M., Claverie, J.M. 2004. The 1.2-megabase genome sequence of Mimivirus. Science 306 (5700), 1344-1350]. These results indicate that the divergence of the major NCLDV families occurred at an early stage of evolution, prior to the divergence of the major eukaryotic lineages. It is shown that subsequent evolution of the NCLDV genomes involved lineage-specific expansion of paralogous gene families and acquisition of numerous genes via horizontal gene transfer from the eukaryotic hosts, other viruses, and bacteria (primarily, endosymbionts and parasites). Amongst the expansions, there are multiple families of predicted virus-specific signaling and regulatory domains. Most NCLDVs have also acquired large arrays of genes related to ubiquitin signaling, and the animal viruses in particular have independently evolved several defenses against apoptosis and immune response, including growth factors and potential inhibitors of cytokine signaling. The mimivirus displays an enormous array of genes of bacterial provenance, including a representative of a new class of predicted papain-like peptidases. It is further demonstrated that a significant number of genes found in NCLDVs also have homologs in bacteriophages, although a vertical relationship between the NCLDVs and a particular bacteriophage group could not be established. On the basis of these observations, two alternative scenarios for the origin of the NCLDVs and other groups of large DNA viruses of eukaryotes are considered. One of these scenarios posits an early assembly of an already large DNA virus precursor from which various large DNA viruses diverged through an ongoing process of displacement of the original genes by xenologous or non-orthologous genes from various sources. The second scenario posits convergent emergence, on multiple occasions, of large DNA viruses from small plasmid-like precursors through independent accretion of similar sets of genes due to strong selective pressures imposed by their life cycles and hosts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidemiology of African swine fever virus.

              African swine fever virus used to occur primarily in Africa. There had been occasional incursions into Europe or America which apart from the endemic situation on the island of Sardinia always had been successfully controlled. But following an introduction of the virus in 2007, it now has expanded its geographical distribution into Caucasus and Eastern Europe where it has not been controlled, to date. African swine fever affects domestic and wild pig species, and can involve tick vectors. The ability of the virus to survive within a particular ecosystem is defined by the ecology of its wild host populations and the characteristics of livestock production systems, which influence host and vector species densities and interrelationships. African swine fever has high morbidity in naïve pig populations and can result in very high mortality. There is no vaccine or treatment available. Apart from stamping out and movement control, there are no control measures, thereby potentially resulting in extreme losses for producers. Prevention and control of the infection requires good understanding of its epidemiology, so that targeted measures can be instigated. Copyright © 2012 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Biochem Soc Trans
                Biochem. Soc. Trans
                BST
                Biochemical Society Transactions
                Portland Press Ltd.
                0300-5127
                1470-8752
                28 August 2020
                29 July 2020
                : 48
                : 4
                : 1569-1581
                Affiliations
                RNAP lab, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K.
                Author notes
                Correspondence: Finn Werner ( f.werner@ 123456ucl.ac.uk )
                Author information
                http://orcid.org/0000-0002-3930-3821
                Article
                BST-48-1569
                10.1042/BST20191108
                7458399
                32725217
                498fc076-22e3-44fe-8f56-d01c4ea3c370
                © 2020 The Author(s)

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). Open access for this article was enabled by the participation of University College London in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society under a transformative agreement with JISC.

                History
                : 31 May 2020
                : 1 July 2020
                : 3 July 2020
                Categories
                Virology
                RNA
                Omics
                Microbiology
                Gene Expression & Regulation
                Review Articles

                Biochemistry
                african swine fever virus,gene expression and regulation,rna polymerase,rna sequencing,transcription,virology

                Comments

                Comment on this article