47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Exercise on Spinal Deformities and Quality of Life in Patients with Adolescent Idiopathic Scoliosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives. This systematic review was conducted to examine the effects of exercise on spinal deformities and quality of life in patients with adolescent idiopathic scoliosis (AIS). Data Sources. Electronic databases, including PubMed, CINAHL, Embase, Scopus, Cochrane Register of Controlled Trials, PEDro, and Web of Science, were searched for research articles published from the earliest available dates up to May 31, 2015, using the key words “exercise,” “postural correction,” “posture,” “postural curve,” “Cobb's angle,” “quality of life,” and “spinal deformities,” combined with the Medical Subject Heading “scoliosis.” Study Selection. This systematic review was restricted to randomized and nonrandomized controlled trials on AIS published in English language. The quality of selected studies was assessed by the PEDro scale, the Cochrane Collaboration's tool, and the Grading of Recommendations Assessment, Development, and Evaluation System (GRADE). Data Extraction. Descriptive data were collected from each study. The outcome measures of interest were Cobb angle, trunk rotation, thoracic kyphosis, lumbar kyphosis, vertebral rotation, and quality of life. Data Synthesis. A total of 30 studies were assessed for eligibility. Six of the 9 selected studies reached high methodological quality on the PEDro scale. Meta-analysis revealed moderate-quality evidence that exercise interventions reduce the Cobb angle, angle of trunk rotation, thoracic kyphosis, and lumbar lordosis and low-quality evidence that exercise interventions reduce average lateral deviation. Meta-analysis revealed moderate-quality evidence that exercise interventions improve the quality of life. Conclusions. A supervised exercise program was superior to controls in reducing spinal deformities and improving the quality of life in patients with AIS.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Adolescent idiopathic scoliosis.

          Adolescent idiopathic scoliosis (AIS) affects 1-3% of children in the at-risk population of those aged 10-16 years. The aetiopathogensis of this disorder remains unknown, with misinformation about its natural history. Non-surgical treatments are aimed to reduce the number of operations by preventing curve progression. Although bracing and physiotherapy are common treatments in much of the world, their effectiveness has never been rigorously assessed. Technological advances have much improved the ability of surgeons to safely correct the deformity while maintaining sagittal and coronal balance. However, we do not have long-term results of these changing surgical treatments. Much has yet to be learned about the general health, quality of life, and self-image of both treated and untreated patients with AIS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of bracing in adolescents with idiopathic scoliosis.

            The role of bracing in patients with adolescent idiopathic scoliosis who are at risk for curve progression and eventual surgery is controversial. We conducted a multicenter study that included patients with typical indications for bracing due to their age, skeletal immaturity, and degree of scoliosis. Both a randomized cohort and a preference cohort were enrolled. Of 242 patients included in the analysis, 116 were randomly assigned to bracing or observation, and 126 chose between bracing and observation. Patients in the bracing group were instructed to wear the brace at least 18 hours per day. The primary outcomes were curve progression to 50 degrees or more (treatment failure) and skeletal maturity without this degree of curve progression (treatment success). The trial was stopped early owing to the efficacy of bracing. In an analysis that included both the randomized and preference cohorts, the rate of treatment success was 72% after bracing, as compared with 48% after observation (propensity-score-adjusted odds ratio for treatment success, 1.93; 95% confidence interval [CI], 1.08 to 3.46). In the intention-to-treat analysis, the rate of treatment success was 75% among patients randomly assigned to bracing, as compared with 42% among those randomly assigned to observation (odds ratio, 4.11; 95% CI, 1.85 to 9.16). There was a significant positive association between hours of brace wear and rate of treatment success (P<0.001). Bracing significantly decreased the progression of high-risk curves to the threshold for surgery in patients with adolescent idiopathic scoliosis. The benefit increased with longer hours of brace wear. (Funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases and others; BRAIST ClinicalTrials.gov number, NCT00448448.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Adolescent idiopathic scoliosis: natural history and long term treatment effects

              Adolescent idiopathic scoliosis is a lifetime, probably systemic condition of unknown cause, resulting in a spinal curve or curves of ten degrees or more in about 2.5% of most populations. However, in only about 0.25% does the curve progress to the point that treatment is warranted. Untreated, adolescent idiopathic scoliosis does not increase mortality rate, even though on rare occasions it can progress to the >100° range and cause premature death. The rate of shortness of breath is not increased, although patients with 50° curves at maturity or 80° curves during adulthood are at increased risk of developing shortness of breath. Compared to non-scoliotic controls, most patients with untreated adolescent idiopathic scoliosis function at or near normal levels. They do have increased pain prevalence and may or may not have increased pain severity. Self-image is often decreased. Mental health is usually not affected. Social function, including marriage and childbearing may be affected, but only at the threshold of relatively larger curves. Non-operative treatment consists of bracing for curves of 25° to 35° or 40° in patients with one to two years or more of growth remaining. Curve progression of ≥ 6° is 20 to 40% more likely with observation than with bracing. Operative treatment consists of instrumentation and arthrodesis to realign and stabilize the most affected portion of the spine. Lasting curve improvement of approximately 40% is usually achieved. In the most completely studied series to date, at 20 to 28 years follow-up both braced and operated patients had similar, significant, and clinically meaningful reduced function and increased pain compared to non-scoliotic controls. However, their function and pain scores were much closer to normal than patient groups with other, more serious conditions. Risks associated with treatment include temporary decrease in self-image in braced patients. Operated patients face the usual risks of major surgery, a 6 to 29% chance of requiring re-operation, and the remote possibility of developing a pain management problem. Knowledge of adolescent idiopathic scoliosis natural history and long-term treatment effects is and will always remain somewhat incomplete. However, enough is know to provide patients and parents the information needed to make informed decisions about management options.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                25 October 2015
                : 2015
                : 123848
                Affiliations
                1Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
                2Dr. D. Y. Patil College of Physiotherapy, Dr. D. Y. Patil Vidyapeeth, Pune, India
                3Department of Physiotherapy, College of Applied Medical Sciences, Jazan University, Saudi Arabia
                4Department of Orthopedics, JNMC, AMU, Aligarh, India
                Author notes

                Academic Editor: Massimiliano Pau

                Article
                10.1155/2015/123848
                4637024
                26583083
                4a4fef7f-09c9-458b-872b-7583a86680fa
                Copyright © 2015 Shahnawaz Anwer et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 April 2015
                : 15 June 2015
                : 18 June 2015
                Categories
                Review Article

                Comments

                Comment on this article