9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systematic large-scale meta-analysis identifies miRNA-429/200a/b and miRNA-141/200c clusters as biomarkers for necrotizing enterocolitis in newborn

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Necrotizing enterocolitis (NEC) is a critical neonatal disease with a high mortality. The possibility that miRNAs may play an important role in NEC has raised great attention. Hence, the present study identified biomarkers that affected NEC in newborn progression through miRNA and gene expression profile analysis. miRNA chip GSE68054 and gene chip GSE46619 of NEC in newborn were analyzed to screen out differentially expressed miRNA and differentially expressed genes (DEGs). Next, target genes of differentially expressed miRNA were predicted, and differentially expressed miRNA-DEG regulatory network was constructed to select key miRNAs. After gene ontology and kyoto encyclopedia of genes and genomes enrichment analysis on target genes of key miRNAs, the target genes enriched in pathways were extracted to establish differentially expressed miRNA-DEG-disease gene network for gene interaction analysis. Targetting relationship between miRNAs and target genes was verified. A total of 15 miRNAs were differentially expressed in NEC in newborn, amongst which miR-429/200a/b and miR-141/200c clusters were poorly expressed and might play a significant role in NEC in newborn. Besides, target genes of miR-429/200a/b and miR-141/200c clusters were enriched in 11 signaling pathways. Vascular endothelial growth factor (VEGFA), E-selectin (SELE), kinase insert domain receptor (KDR), fms-related tyrosine kinase 1 (FLT1), and hepatocyte growth factor (HGF) were highly expressed in NEC in newborn, which were negatively regulated by miR-429/200a/b and miR-141/200c clusters and shared close association with disease genes. miR-429/200a/b and miR-141/200c clusters are poorly expressed while their target genes (VEGFA, SELE, KDR, FLT1, and HGF) are highly expressed in NEC in newborn, which might be identified as important biomarkers for this disease.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides.

          S100/calgranulin polypeptides are present at sites of inflammation, likely released by inflammatory cells targeted to such loci by a range of environmental cues. We report here that receptor for AGE (RAGE) is a central cell surface receptor for EN-RAGE (extracellular newly identified RAGE-binding protein) and related members of the S100/calgranulin superfamily. Interaction of EN-RAGEs with cellular RAGE on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Blockade of EN-RAGE/RAGE quenches delayed-type hypersensitivity and inflammatory colitis in murine models by arresting activation of central signaling pathways and expression of inflammatory gene mediators. These data highlight a novel paradigm in inflammation and identify roles for EN-RAGEs and RAGE in chronic cellular activation and tissue injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional microRNA targets in protein coding sequences.

            Experimental evidence has accumulated showing that microRNA (miRNA) binding sites within protein coding sequences (CDSs) are functional in controlling gene expression. Here we report a computational analysis of such miRNA target sites, based on features extracted from existing mammalian high-throughput immunoprecipitation and sequencing data. The analysis is performed independently for the CDS and the 3(')-untranslated regions (3(')-UTRs) and reveals different sets of features and models for the two regions. The two models are combined into a novel computational model for miRNA target genes, DIANA-microT-CDS, which achieves higher sensitivity compared with other popular programs and the model that uses only the 3(')-UTR target sites. Further analysis indicates that genes with shorter 3(')-UTRs are preferentially targeted in the CDS, suggesting that evolutionary selection might favor additional sites on the CDS in cases where there is restricted space on the 3(')-UTR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search

              The MalaCards human disease database (http://www.malacards.org/) is an integrated compendium of annotated diseases mined from 68 data sources. MalaCards has a web card for each of ∼20 000 disease entries, in six global categories. It portrays a broad array of annotation topics in 15 sections, including Summaries, Symptoms, Anatomical Context, Drugs, Genetic Tests, Variations and Publications. The Aliases and Classifications section reflects an algorithm for disease name integration across often-conflicting sources, providing effective annotation consolidation. A central feature is a balanced Genes section, with scores reflecting the strength of disease-gene associations. This is accompanied by other gene-related disease information such as pathways, mouse phenotypes and GO-terms, stemming from MalaCards’ affiliation with the GeneCards Suite of databases. MalaCards’ capacity to inter-link information from complementary sources, along with its elaborate search function, relational database infrastructure and convenient data dumps, allows it to tackle its rich disease annotation landscape, and facilitates systems analyses and genome sequence interpretation. MalaCards adopts a ‘flat’ disease-card approach, but each card is mapped to popular hierarchical ontologies (e.g. International Classification of Diseases, Human Phenotype Ontology and Unified Medical Language System) and also contains information about multi-level relations among diseases, thereby providing an optimal tool for disease representation and scrutiny.
                Bookmark

                Author and article information

                Journal
                Biosci Rep
                Biosci. Rep
                ppbioscirep
                BSR
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                05 August 2019
                30 September 2019
                24 September 2019
                : 39
                : 9
                : BSR20191503
                Affiliations
                [1 ]Department of Pediatrics, Linyi People’s Hospital, Linyi 276000, P.R. China
                [2 ]Department of Pediatrics, The Second Hospital of Shandong University, Jinan 250033, P.R. China
                Author notes
                Correspondence: Yi-Biao Wang ( wybwangyibiao@ 123456yeah.net )
                Author information
                http://orcid.org/0000-0003-4430-0737
                Article
                10.1042/BSR20191503
                6757181
                31383782
                4a8bb9dd-b43e-4209-b67f-f9b281255481
                © 2019 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 28 May 2019
                : 18 July 2019
                : 01 August 2019
                Page count
                Pages: 11
                Categories
                Research Articles
                Research Article

                Life sciences
                bioinformatics analysis,differentially expressed genes,differentially expressed micrornas,necrotizing enterocolitis in newborn

                Comments

                Comment on this article