27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms.

          Abstract

          In this work, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms. 35Cl SSNMR central-transition powder patterns of chloride ions are typically tens to hundreds of kHz in breadth, and most cannot be excited uniformly with high-power rectangular pulses or acquired under conditions of magic-angle spinning (MAS). Herein, we demonstrate the combination of DNP and 1H– 35Cl broadband adiabatic inversion cross polarization (BRAIN-CP) experiments for the acquisition of high quality wideline spectra of APIs under static sample conditions, and obtain signals up to 50 times greater than in spectra acquired without the use of DNP at 100 K. We report a new protocol, called spinning-on spinning-off (SOSO) acquisition, where MAS is applied during part of the polarization delay to increase the DNP enhancements and then the MAS rotation is stopped so that a wideline 35Cl NMR powder pattern free from the effects of spinning sidebands can be acquired under static conditions. This method provides an additional two-fold signal enhancement compared to DNP-enhanced SSNMR spectra acquired under purely static conditions. DNP-enhanced 35Cl experiments are used to characterize APIs in bulk and dosage forms with Cl contents as low as 0.45 wt%. These results are compared to DNP-enhanced 1H– 13C CP/MAS spectra of APIs in dosage forms, which are often hindered by interfering signals arising from the binders, fillers and other excipient materials.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          An improved broadband decoupling sequence for liquid crystals and solids.

          Recently we developed an efficient broadband decoupling sequence called SPARC-16 for liquid crystals ¿J. Magn. Reson. 130, 317 (1998). The sequence is based upon a 16-step phase cycling of the 2-step TPPM decoupling method for solids ¿J. Chem. Phys. 103, 6951 (1995). Since then, we have found that a stepwise variation of the phase angle in the TPPM sequence offers even better results. The application of this new method to a liquid crystalline compound, 4-n-pentyl-4'-cyanobiphenyl, and a solid, L-tyrosine hydrochloride, is reported. The reason for the improvement is explained by an analysis of the problem in the rotating frame. Copyright 2000 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic nuclear polarization at high magnetic fields.

            Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (microw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (gamma(e)gamma(l)), being approximately 660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (> or =5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms-the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in microw and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamic nuclear polarization surface enhanced NMR spectroscopy.

              Many of the functions and applications of advanced materials result from their interfacial structures and properties. However, the difficulty in characterizing the surface structure of these materials at an atomic level can often slow their further development. Solid-state NMR can probe surface structure and complement established surface science techniques, but its low sensitivity often limits its application. Many materials have low surface areas and/or low concentrations of active/surface sites. Dynamic nuclear polarization (DNP) is one intriguing method to enhance the sensitivity of solid-state NMR experiments by several orders of magnitude. In a DNP experiment, the large polarization of unpaired electrons is transferred to surrounding nuclei, which provides a maximum theoretical DNP enhancement of ∼658 for (1)H NMR. In this Account, we discuss the application of DNP to enhance surface NMR signals, an approach known as DNP surface enhanced NMR spectroscopy (DNP SENS). Enabling DNP for these systems requires bringing an exogeneous radical solution into contact with surfaces without diluting the sample. We proposed the incipient wetness impregnation technique (IWI), a well-known method in materials science, to impregnate porous and particulate materials with just enough radical containing solution to fill the porous volume. IWI offers several advantages: it is extremely simple, provides a uniform wetting of the surface, and does not increase the sample volume or substantially reduce the concentration of the sample. This Account describes the basic principles behind DNP SENS through results obtained for mesoporous and nanoparticulate samples impregnated with radical solutions. We also discuss the quantification of the overall sensitivity enhancements obtained with DNP SENS and compare that with ordinary room temperature NMR spectroscopy. We then review the development of radicals and solvents that give the best possible enhancements today. With the best polarizing mixtures, DNP SENS enhances sensitivity by a factor of up to 100, which decreases acquisition time by five orders of magnitude. Such enhancement enables the detailed and expedient atomic level characterization of the surfaces of complex materials at natural isotopic abundance and opens new avenues for NMR. To illustrate these improvements, we describe the successful application of DNP SENS to characterize hybrid materials, organometallic surface species, and metal-organic frameworks.
                Bookmark

                Author and article information

                Journal
                PPCPFQ
                Physical Chemistry Chemical Physics
                Phys. Chem. Chem. Phys.
                Royal Society of Chemistry (RSC)
                1463-9076
                1463-9084
                2016
                2016
                : 18
                : 37
                : 25893-25904
                Affiliations
                [1 ]Department of Chemistry and Biochemistry
                [2 ]University of Windsor
                [3 ]Windsor
                [4 ]Canada
                [5 ]Department of Chemistry
                [6 ]Iowa State University
                [7 ]Ames
                [8 ]USA
                [9 ]US DOE Ames Laboratory
                [10 ]Institut des Sciences et Ingénierie Chimiques
                [11 ]Ecole Polytechnique Fédérale de Lausanne (EPFL)
                [12 ]Lausanne
                [13 ]Switzerland
                Article
                10.1039/C6CP04353D
                27711465
                4a909d28-5b59-4d7e-86fd-cd4f4714e38d
                © 2016
                History

                Comments

                Comment on this article