2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Web-based display of protein surface and pH-dependent properties for assessing the developability of biotherapeutics

      research-article
      ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein instability leads to reversible self-association and irreversible aggregation which is a major concern for developing new biopharmaceutical leads. Protein solution behaviour is dictated by the physicochemical properties of the protein and the solution. Optimising protein solutions through experimental screens and targeted protein engineering can be a difficult and time consuming process. Here, we describe development of the protein-sol web server, which was previously restricted to protein solubility prediction from amino acid sequence. Tools are presented for calculating and mapping patches of hydrophobicity and charge on the protein surface. In addition, predictions of folded state stability and net charge are displayed as a heatmap for a range of pH and ionic strength conditions. Tools are evaluated in the context of antibodies, their fragments and interactions. Surprisingly, antibody-antigen interfaces are, on average, at least as polar as Fab surfaces. This benchmarking process provides the user with thresholds with which to assess non-polar surface patches, and possible solubility implications, in proteins of interest. Stability heatmaps compare favourably with experimental data for CH2 and CH3 domains. Display and quantification of surface polarity and pH/ionic strength dependence will be useful generally for investigation of protein biophysics.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies.

          The formulation and delivery of biopharmaceutical drugs, such as monoclonal antibodies and recombinant proteins, poses substantial challenges owing to their large size and susceptibility to degradation. In this Review we highlight recent advances in formulation and delivery strategies--such as the use of microsphere-based controlled-release technologies, protein modification methods that make use of polyethylene glycol and other polymers, and genetic manipulation of biopharmaceutical drugs--and discuss their advantages and limitations. We also highlight current and emerging delivery routes that provide an alternative to injection, including transdermal, oral and pulmonary delivery routes. In addition, the potential of targeted and intracellular protein delivery is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design.

            We present the crystal structure at 2.7 angstrom resolution of the human antibody IgG1 b12. Antibody b12 recognizes the CD4-binding site of human immunodeficiency virus-1 (HIV-1) gp120 and is one of only two known antibodies against gp120 capable of broad and potent neutralization of primary HIV-1 isolates. A key feature of the antibody-combining site is the protruding, finger-like long CDR H3 that can penetrate the recessed CD4-binding site of gp120. A docking model of b12 and gp120 reveals severe structural constraints that explain the extraordinary challenge in eliciting effective neutralizing antibodies similar to b12. The structure, together with mutagenesis studies, provides a rationale for the extensive cross-reactivity of b12 and a valuable framework for the design of HIV-1 vaccines capable of eliciting b12-like activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Protein–Sol: a web tool for predicting protein solubility from sequence

              Abstract Motivation Protein solubility is an important property in industrial and therapeutic applications. Prediction is a challenge, despite a growing understanding of the relevant physicochemical properties. Results Protein–Sol is a web server for predicting protein solubility. Using available data for Escherichia coli protein solubility in a cell-free expression system, 35 sequence-based properties are calculated. Feature weights are determined from separation of low and high solubility subsets. The model returns a predicted solubility and an indication of the features which deviate most from average values. Two other properties are profiled in windowed calculation along the sequence: fold propensity, and net segment charge. The utility of these additional features is demonstrated with the example of thioredoxin. Availability and implementation The Protein–Sol webserver is available at http://protein-sol.manchester.ac.uk. Contact jim.warwicker@manchester.ac.uk
                Bookmark

                Author and article information

                Contributors
                jim.warwicker@manchester.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                13 February 2019
                13 February 2019
                2019
                : 9
                : 1969
                Affiliations
                ISNI 0000000121662407, GRID grid.5379.8, School of Chemistry, Manchester Institute of Biotechnology, , The University of Manchester, ; 131 Princess Street, Manchester, M1 7DN UK
                Author information
                http://orcid.org/0000-0002-5424-193X
                http://orcid.org/0000-0002-1302-0815
                Article
                36950
                10.1038/s41598-018-36950-8
                6374528
                30760735
                4a9751f0-8a46-4bfe-8c0b-4a974f302e3b
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 19 July 2018
                : 25 November 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100000266, RCUK | Engineering and Physical Sciences Research Council (EPSRC);
                Award ID: EP/N024796/1
                Award ID: EP/N024796/1
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article