3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements.

      Proceedings of the National Academy of Sciences of the United States of America
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We develop an objective, noninvasive method for determining the frequency selectivity of cochlear tuning at low and moderate sound levels. Applicable in humans at frequencies of 1 kHz and above, the method is based on the measurement of stimulus-frequency otoacoustic emissions and, unlike previous noninvasive physiological methods, does not depend on the frequency selectivity of masking or suppression. The otoacoustic measurements indicate that at low sound levels human cochlear tuning is more than twice as sharp as implied by standard behavioral studies and has a different dependence on frequency. New behavioral measurements designed to minimize the influence of nonlinear effects such as suppression agree with the emission-based values. A comparison of cochlear tuning in cat, guinea pig, and human indicates that, contrary to common belief, tuning in the human cochlea is considerably sharper than that found in the other mammals. The sharper tuning may facilitate human speech communication.

          Related collections

          Author and article information

          Journal
          11867706
          122516
          10.1073/pnas.032675099

          Comments

          Comment on this article

          scite_