11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potencial envolvimento da adiponectina e seus receptores na modulação da esteroidogênese em corpo lúteo de cadelas ao longo do diestro Translated title: Potential involvement of adinopectin and its receptors in the modulation of steroidogenesis in corpus luteum of bitches during diestrus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          No ciclo estral de cadelas a fase luteínica, denominada diestro, compreende um período que varia de 60 a 100 dias em animais não-prenhes, caracterizado pela elevação plasmática de progesterona nos primeiros 20 dias pós ovulação (p.o). A adiponectina é a mais abundante proteína secretada pelo tecido adiposo, porém sua concentração plasmática diminui significativamente em alterações metabólicas como resistência insulínica e Diabetes mellitus tipo2, alterações descritas como relacionadas em algumas cadelas com o período de diestro. O objetivo do estudo foi determinar a expressão e imunolocalização do sistema adiponectina (adiponectina e seus receptores, adipoR1 e adipoR2) no corpo lúteo de cadelas ao longo do diestro, correlacionando-o ao perfil hormonal de 17β-estradiol e progesterona, assim como à expressão de um dos genes alvo do sistema, o PPAR-γ. Para realização do estudo foram coletados corpos lúteos de 28 cadelas durante ovariosalpingohisterectomia de eleição nos dias 10, 20, 30, 40, 50, 60 e 70 pós ovulação (o dia zero da ovulação foi considerado aquele no qual a concentração plasmática de progesterona atingiu 5ng/mL). Os corpos lúteos foram avaliados por imunohistoquímica para adiponectina e seus receptores e a expressão do RNAm do PPAR-γ por PCR em tempo real. A análise estatística da avaliação gênica foi realizada com o teste ANOVA, seguido por comparação múltipla Newman-Keuls. O sinal da adiponectina apresentou-se mais intenso até os primeiros 20 dias p.o, momento de regência da progesterona; houve queda gradativa após este período, coincidindo com a ascensão do 17β-estradiol, cujo pico foi notado próximo do dia 40 p.o. A queda marcante da adiponectina ocorreu após 50 dias p.o. O sinal do adipoR1 mostrou-se bem evidente até os 40 dias p.o e o do adipoR2 até os 50 dias p. o, decaindo posteriormente. Foi observada maior expressão do gene PPAR-γ aos 10, 30 e 70 dias p.o. Estes resultados mostram que a expressão protéica da adiponectina e de seus receptores se altera ao longo do diestro e que estas alterações podem estar relacionados às alterações hormonais e expressão do PPAR- γ, participando do mecanismo fisiológico de desenvolvimento, manutenção, atividade e regressão luteínica em cadelas.

          Translated abstract

          In the estrous cycle of bitches, the luteal phase or diestrus includes a period ranging from 60 to 100 days in non-pregnant animals, characterized by elevated serum progesterone during the first 20 days post-ovulation (p.o). Adiponectin is the most abundant protein secreted by adipose tissue, but plasma concentration decreases significantly in metabolic disorders like insulin resistance and diabetes mellitus type 2, described as related changes in some bitches in diestrus. The aim of this study was to determine the expression and immunolocalization of the adiponectin system (adiponectin, and adipoR1 adipoR2) in the corpus luteum during diestrus, and correlate it to hormonal profile of 17β-estradiol and progesterone, as well as the expression of a gene target of the system, the PPAR-γ. For the study, corpora lutea were collected from 28 dogs during ovariosalpingohysterectomy on days 10, 20, 30, 40, 50, 60 and 70 post ovulation (day zero of ovulation was considered the day when the plasma progesterone concentration reached 5ng/mL). The corpora lutea were evaluated by immunohistochemistry for adiponectin, adipoR1 and adipoR2 and mRNA expression of PPAR-γ by real-time PCR. Statistical analysis of gene expression was performed with ANOVA followed by Newman-Keuls multiple comparisons. Adiponectin positive signal was stronger during the first 20 days p.o, time of the regency of progesterone; there was a gradual adiponectin and progesterone decline after this period, coinciding with the rise of 17β-estradiol, whose peak was near the 40 days p.o. The markedly adiponectin decrease occurred after 50 days p.o. The signal of adipoR1 was markedly evident at 40 days p.o and that of adipoR2 up to 50 days p.o, declining afterwards. We observed higher expression of PPAR-γ gene at 10, 30 and 70 days p.o. These results show that adiponectin and its receptors protein expression is altered during the diestrus and that these changes may be related to hormonal changes and expression of PPAR-γ, participating in the physiological mechanism of development, maintenance, activity and luteal regression in bitches.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular cloning and tissue expression of chicken AdipoR1 and AdipoR2 complementary deoxyribonucleic acids.

          AdipoR1 and AdipoR2 belong to a novel class of transmembrane receptors that mediate the effects of adiponectin. We have cloned the chicken AdipoR1 and AdipoR2 complementary deoxyribonucleic acids (cDNA) and determined their expression in various tissues. We also investigated the effect of feed deprivation on the expression of AdipoR1 or AdipoR2 mRNA in the chicken diencephalon, liver, anterior pituitary gland, and adipose tissue. The chicken AdipoR1 and AdipoR2 cDNA sequences were 76-83% identical to the respective mammalian sequences. A hydrophobicity analysis of the deduced amino acid sequences of chicken AdipoR1/AdipoR2 revealed seven distinct hydrophobic regions representing seven transmembrane domains. By RT-PCR, we detected AdipoR1 and AdipoR2 mRNA in adipose tissue, liver, anterior pituitary gland, diencephalon, skeletal muscle, kidney, spleen, ovary, and blood. AdipoR1 or AdipoR2 mRNA expression in various tissues was quantified by real-time quantitative PCR, and AdipoR1 mRNA expression was the highest in skeletal muscle, adipose tissue and diencephalon, followed by kidney, ovary, liver, anterior pituitary gland, and spleen. AdipoR2 mRNA expression was the highest in adipose tissue followed by skeletal muscle, liver, ovary, diencephalon, anterior pituitary gland, kidney, and spleen. We also found that a 48 h feed deprivation significantly decreased AdipoR1 mRNA quantity in the chicken pituitary gland, while AdipoR2 mRNA quantity was significantly increased in adipose tissue (P<0.05). We conclude that the AdipoR1 and AdipoR2 genes are ubiquitously expressed in chicken tissues and that their expression is altered by feed deprivation in the anterior pituitary gland and adipose tissue.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The nuclear receptor PPAR gamma is expressed by mouse T lymphocytes and PPAR gamma agonists induce apoptosis.

            Peroxisome proliferator-activated receptor (PPAR)-gamma is a nuclear hormone receptor that serves as a trans factor to regulate lipid metabolism. Intense interest is focused on PPAR-gamma and its ligands owing to its putative role in adipocyte differentiation. Little is known, however, about the functions of PPAR-gamma in the immune system, especially in T lymphocytes. We demonstrate that both naive and activated ovalbumin-specific T cells from DO11.10-transgenic mice express PPAR-gamma mRNA and protein. In order to determine the function of PPAR-gamma, T cells were stimulated with phorbol 12-myristate 13-acetate and ionomycin or antigen and antigen-presenting cells. Simultaneous exposure to PPAR-gamma ligands (e. g. 15-deoxy-Delta(12, 14)-prostaglandin J(2), troglitazone) showed drastic inhibition of proliferation and significant decreases in cell viability. The decrease in cell viability was due to apoptosis of the T lymphocytes, and occurred only when cells were treated with PPAR-gamma, and not PPAR-alpha agonists, revealing specificity of this response for PPAR-gamma. These observations suggest that PPAR-gamma agonists play an important role in regulating T cell-mediated immune responses by inducing apoptosis. T cell death via PPAR-gamma ligation may act as a potent anti-inflammatory signal in the immune system, and ligands could possibly be used to control disorders in which excessive inflammation occurs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biology of gonadotrophin secretion in adult and prepubertal female dogs.

              Studies in the female domestic dog demonstrate that luteinizing hormone (LH) and follicle-stimulating hormone (FSH) have secretion patterns that are pulsatile, are inhibited by oestradiol during pro-oestrus and surge to maximal values before ovulation. Studies in ovariectomized bitches suggest that the periovulatory surge is triggered by a preovulatory decline at late pro-oestrus in the oestrogen:progesterone ratio. During the 3-8-month non-seasonal anoestrus, FSH concentrations usually are 50-100% of those of the periovulatory peak, whereas LH concentrations are only 10-20% of peak values. In ovariectomized bitches FSH concentrations are often 5-10 times preovulatory peak values, whereas LH concentrations are only the same as, or double, peak values. Increased LH concentration and pulse frequency are associated with the termination of anoestrus. Treatment with gonadotrophin-releasing hormone (GnRH) pulses or infusions of GnRH agonists can induce fertile oestrus in early anoestrous bitches, as can treatment with a dopamine agonist, presumably by suppression of prolactin secretion. Between 4 months of age and pubertal pro-oestrus at 8-12 months of age, serum concentrations of FSH and LH are similar to those in adult anoestrus, and are suppressed during chronic infusion of GnRH agonist. The latter resulted in a reversible inhibition of puberty during 1 year of treatment. Studies in vivo have shown that LH and prolactin are luteotrophic throughout most of the luteal phase. LH stimulated progesterone synthesis by bitch luteal cells in vitro in the presence or absence of stimulant factors or steroid precursors present in serum.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Journal
                pvb
                Pesquisa Veterinária Brasileira
                Pesq. Vet. Bras.
                Colégio Brasileiro de Patologia Animal - CBPA (Rio de Janeiro )
                1678-5150
                October 2012
                : 32
                : 10
                : 1055-1060
                Affiliations
                [1 ] Universidade de São Paulo Brazil
                [2 ] Universidade Federal da Paraíba Brazil
                Article
                S0100-736X2012001000020
                10.1590/S0100-736X2012001000020
                4b2089ce-25c6-4dcc-a1c5-b53cde73d591

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=0100-736X&lng=en
                Categories
                VETERINARY SCIENCES

                General veterinary medicine
                Corpus luteum,adiponectin,adipoR1,adipoR2,PPAR-γ,Corpo lúteo,diestro,adiponectina

                Comments

                Comment on this article