9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Computer-Aided Diagnosis Scheme for Determining Histological Classification of Breast Lesions on Ultrasonographic Images Using Convolutional Neural Network

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It can be difficult for clinicians to accurately discriminate among histological classifications of breast lesions on ultrasonographic images. The purpose of this study was to develop a computer-aided diagnosis (CADx) scheme for determining histological classifications of breast lesions using a convolutional neural network (CNN). Our database consisted of 578 breast ultrasonographic images. It included 287 malignant (217 invasive carcinomas and 70 noninvasive carcinomas) and 291 benign lesions (111 cysts and 180 fibroadenomas). In this study, the CNN constructed from four convolutional layers, three batch-normalization layers, four pooling layers, and two fully connected layers was employed for distinguishing between the four different types of histological classifications for lesions. The classification accuracies for histological classifications with our CNN model were 83.9–87.6%, which were substantially higher than those with our previous method (55.7–79.3%) using hand-crafted features and a classifier. The area under the curve with our CNN model was 0.976, whereas that with our previous method was 0.939 ( p = 0.0001). Our CNN model would be useful in differential diagnoses of breast lesions as a diagnostic aid.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Overview of deep learning in medical imaging.

          The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a lesser number of training cases than did CNNs. "Deep learning", or ML with image input, in medical imaging is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical imaging in the next few decades.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Survey on Deep Learning in Medical Image Analysis

            Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ROC methodology in radiologic imaging.

              David Metz (1986)
              If the performance of a diagnostic imaging system is to be evaluated objectively and meaningfully, one must compare radiologists' image-based diagnoses with actual states of disease and health in a way that distinguishes between the inherent diagnostic capacity of the radiologists' interpretations of the images, and any tendencies to "under-read" or "over-read". ROC methodology provides the only known basis for distinguishing between these two aspects of diagnostic performance. After identifying the fundamental issues that motivate ROC analysis, this article develops ROC concepts in an intuitive way. The requirements of a valid ROC study and practical techniques for ROC data collection and data analysis are sketched briefly. A survey of the radiologic literature indicates the broad variety of evaluation studies in which ROC analysis has been employed.
                Bookmark

                Author and article information

                Journal
                Diagnostics (Basel)
                Diagnostics (Basel)
                diagnostics
                Diagnostics
                MDPI
                2075-4418
                25 July 2018
                September 2018
                : 8
                : 3
                : 48
                Affiliations
                Department of Electronic and Computer Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; ryohei@ 123456fc.ritsumei.ac.jp
                Author notes
                [* ]Correspondence: hizukuri@ 123456fc.ritsume.ac.jp ; Tel.: +81-77-561-2706
                Article
                diagnostics-08-00048
                10.3390/diagnostics8030048
                6163984
                30044441
                4b65085e-df3c-47d9-831c-b812b5855c9d
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 May 2018
                : 23 July 2018
                Categories
                Article

                histological classification,computer-aided diagnosis,breast lesion,ultrasonographic image,convolutional neural network

                Comments

                Comment on this article