51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mapping differential interactomes by affinity purification coupled with data independent mass spectrometry acquisition

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Characterizing changes in protein-protein interactions associated with sequence variants ( e.g. disease-associated mutations or splice forms) or following exposure to drugs, growth factors or hormones is critical to understanding how protein complexes are built, localized and regulated. Affinity purification (AP) coupled with mass spectrometry permits the analysis of protein interactions under near-physiological conditions, yet monitoring interaction changes requires the development of a robust and sensitive quantitative approach, especially for large-scale studies where cost and time are major considerations. To this end, we have coupled AP to data-independent mass spectrometric acquisition (SWATH), and implemented an automated data extraction and statistical analysis pipeline to score modulated interactions. Here, we use AP-SWATH to characterize changes in protein-protein interactions imparted by the HSP90 inhibitor NVP-AUY922 or melanoma-associated mutations in the human kinase CDK4. We show that AP-SWATH is a robust label-free approach to characterize such changes, and propose a scalable pipeline for systems biology studies.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data

          Affinity purification coupled with mass spectrometry (AP-MS) is now a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (e.g. proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. While the standard approach is to identify nonspecific interactions using one or more negative controls, most small-scale AP-MS studies do not capture a complete, accurate background protein set. Fortunately, negative controls are largely bait-independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the Contaminant Repository for Affinity Purification (the CRAPome) and describe the use of this resource to score protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely available online at www.crapome.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra.

            The Paragon Algorithm, a novel database search engine for the identification of peptides from tandem mass spectrometry data, is presented. Sequence Temperature Values are computed using a sequence tag algorithm, allowing the degree of implication by an MS/MS spectrum of each region of a database to be determined on a continuum. Counter to conventional approaches, features such as modifications, substitutions, and cleavage events are modeled with probabilities rather than by discrete user-controlled settings to consider or not consider a feature. The use of feature probabilities in conjunction with Sequence Temperature Values allows for a very large increase in the effective search space with only a very small increase in the actual number of hypotheses that must be scored. The algorithm has a new kind of user interface that removes the user expertise requirement, presenting control settings in the language of the laboratory that are translated to optimal algorithmic settings. To validate this new algorithm, a comparison with Mascot is presented for a series of analogous searches to explore the relative impact of increasing search space probed with Mascot by relaxing the tryptic digestion conformance requirements from trypsin to semitrypsin to no enzyme and with the Paragon Algorithm using its Rapid mode and Thorough mode with and without tryptic specificity. Although they performed similarly for small search space, dramatic differences were observed in large search space. With the Paragon Algorithm, hundreds of biological and artifact modifications, all possible substitutions, and all levels of conformance to the expected digestion pattern can be searched in a single search step, yet the typical cost in search time is only 2-5 times that of conventional small search space. Despite this large increase in effective search space, there is no drastic loss of discrimination that typically accompanies the exploration of large search space.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation.

              Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated. Evidence suggests that eIF4F is also implicated in malignancy and apoptosis.
                Bookmark

                Author and article information

                Journal
                101215604
                32338
                Nat Methods
                Nat. Methods
                Nature methods
                1548-7091
                1548-7105
                24 December 2013
                27 October 2013
                December 2013
                01 June 2014
                : 10
                : 12
                : 10.1038/nmeth.2702
                Affiliations
                [1 ]Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
                [2 ]AB Sciex, Concord, ON, Canada
                [3 ]Whitehead Institute for Biomedical Research, Cambridge, MA, USA
                [4 ]Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
                [5 ]Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
                [6 ]Department of Genetics, Harvard Medical School, Boston, MA, USA
                [7 ]Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
                [8 ]Howard Hughes Medical Institute, Cambridge, MA, USA
                [9 ]Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
                [10 ]Faculty of Science, University of Zurich, Zurich, Switzerland
                [11 ]Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
                Author notes
                Corresponding authors: Stephen Tate, Stephen.Tate@ 123456absciex.com or Anne-Claude Gingras, gingras@ 123456lunenfeld.ca
                [12]

                These authors contributed equally

                Article
                NIHMS530040
                10.1038/nmeth.2702
                3882083
                24162924
                4b7a899d-0819-4ab0-a80f-a7339d8ee651

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 GM094231 || GM
                Categories
                Article

                Life sciences
                Life sciences

                Comments

                Comment on this article