86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell–mediated glioma rejection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          T cells are crucial effectors of glioma rejection induced by local IL-12 application and CTLA-4 blockade.

          Abstract

          Glioblastomas (GBs) are the most aggressive form of primary brain cancer and virtually incurable. Accumulation of regulatory T (T reg) cells in GBs is thought to contribute to the dampening of antitumor immunity. Using a syngeneic mouse model for GB, we tested whether local delivery of cytokines could render the immunosuppressive GB microenvironment conducive to an antitumor immune response. IL-12 but not IL-23 reversed GB-induced immunosuppression and led to tumor clearance. In contrast to models of skin or lung cancer, IL-12–mediated glioma rejection was T cell dependent and elicited potent immunological memory. To translate these findings into a clinically relevant setting, we allowed for GB progression before initiating therapy. Combined intratumoral IL-12 application with systemic blockade of the co-inhibitory receptor CTLA-4 on T cells led to tumor eradication even at advanced disease stages where monotherapy with either IL-12 or CTLA-4 blockade failed. The combination of IL-12 and CTLA-4 blockade acts predominantly on CD4 + cells, causing a drastic decrease in FoxP3 + T reg cells and an increase in effector T (T eff) cells. Our data provide compelling preclinical findings warranting swift translation into clinical trials in GB and represent a promising approach to increase response rates of CTLA-4 blockade in solid tumors.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells.

          Antitumor activity of CTLA-4 antibody blockade is thought to be mediated by interfering with the negative regulation of T-effector cell (Teff) function resulting from CTLA-4 engagement by B7-ligands. In addition, a role for CTLA-4 on regulatory T cells (Treg), wherein CTLA-4 loss or inhibition results in reduced Treg function, may also contribute to antitumor responses by anti-CTLA-4 treatment. We have examined the role of the immunoglobulin constant region on the antitumor activity of anti-CTLA-4 to analyze in greater detail the mechanism of action of anti-CTLA-4 antibodies. Anti-CTLA-4 antibody containing the murine immunoglobulin G (IgG)2a constant region exhibits enhanced antitumor activity in subcutaneous established MC38 and CT26 colon adenocarcinoma tumor models compared with anti-CTLA-4 containing the IgG2b constant region. Interestingly, anti-CTLA-4 antibodies containing mouse IgG1 or a mutated mouse IgG1-D265A, which eliminates binding to all Fcγ receptors (FcγR), do not show antitumor activity in these models. Assessment of Teff and Treg populations at the tumor and in the periphery showed that anti-CTLA-4-IgG2a mediated a rapid and dramatic reduction of Tregs at the tumor site, whereas treatment with each of the isotypes expanded Tregs in the periphery. Expansion of CD8(+) Teffs is observed with both the IgG2a and IgG2b anti-CTLA-4 isotypes, resulting in a superior Teff to Treg ratio for the IgG2a isotype. These data suggest that anti-CTLA-4 promotes antitumor activity by a selective reduction of intratumoral Tregs along with concomitant activation of Teffs. ©2013 AACR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production.

            Interleukin-12 (IL-12) is a key regulator of cell-mediated immunity that has therapeutic potential in cancer and infectious disease. In a previous Phase 1 dose escalation study of a single test dose of recombinant human IL-12 (rhIL-12) followed 14 days later by cycles of five consecutive daily intravenous injections every 3 weeks, we showed that a dose level up to 500 ng/kg could be administered with acceptable levels of safety. Based on these results, a Phase 2 study was conducted. In the Phase 2 study, however, administration of rhIL-12 at this same dose level resulted in severe toxicities with some patients unable to tolerate more than two successive doses. Of the 17 patients receiving rhIL-12 in the Phase 2 study, 12 patients were hospitalized and two patients died. A thorough scientific investigation to determine the cause of this unexpected toxicity failed to identify any difference in the drug products used or the patient populations enrolled in the Phase 1 and Phase 2 studies that could have accounted for the profound difference in toxicity. The focus of the investigation therefore shifted to the schedule of rhIL-12 administration. We determined that a single injection of rhIL-12 2 weeks before consecutive dosing included in the Phase 1 study, but not in the schedule of administration in the Phase 2 study, has a profound abrogating effect on IL-12-induced interferon-gamma (IFN-gamma) production and toxicity. This observation of schedule-dependent toxicity of IL-12 has been verified in mice, as well as nonhuman primates. In this regard, a single injection of IL-12 before consecutive daily dosing protected mice and cynomolgus monkeys from acute toxicity including mortality and was associated with an attenuated IFN-gamma response. Because of this unique biologic response, careful attention to the schedule of administration is required to assure safe and effective clinical development of this highly promising cytokine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-12 in anti-tumor immunity and immunotherapy.

              Interleukin-12 (IL-12) has an essential role in the interaction between the innate and adaptive arms of immunity by regulating inflammatory responses, innate resistance to infection, and adaptive immunity. Endogenous IL-12 is required for resistance to many pathogens and to transplantable and chemically induced tumors. In experimental tumor models, recombinant IL-12 treatment has a dramatic anti-tumor effect on transplantable tumors, on chemically induced tumors, and in tumors arising spontaneously in genetically modified mice. IL-12 utilizes effector mechanisms of both innate resistance and adaptive immunity to mediate anti-tumor resistance. IFN-gamma and a cascade of other secondary and tertiary pro-inflammatory cytokines induced by IL-12 have a direct toxic effect on the tumor cells or may activate potent anti-angiogenic mechanisms. The stimulating activity of IL-12 on antigen-specific immunity relies mostly on its ability to determine or augment Th1 and cytotoxic T lymphocyte responses. Because of this ability, IL-12 has a potent adjuvant activity in cancer and other vaccines. The promising data obtained in the pre-clinical models of anti-tumor immunotherapy have raised much hope that IL-12 could be a powerful therapeutic agent against cancer. However, excessive clinical toxicity and modest clinical response observed in the clinical trials point to the necessity to plan protocols that minimize toxicity without affecting the anti-tumor effect of IL-12.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                16 December 2013
                : 210
                : 13
                : 2803-2811
                Affiliations
                [1 ]Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
                [2 ]Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
                Author notes
                CORRESPONDENCE Burkhard Becher: becher@ 123456immunology.uzh.ch

                S. Haller’s present address is Dept. of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.

                A. Haimovici’s present address is Dept. of Clinical Research, University Hospital of Berne, 1030 Berne, Switzerland.

                Article
                20130678
                10.1084/jem.20130678
                3865478
                24277150
                4bc4a421-ec92-4c49-acf2-2b7312968775
                © 2013 Vom Berg et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 2 April 2013
                : 31 October 2013
                Categories
                Brief Definitive Report

                Medicine
                Medicine

                Comments

                Comment on this article