7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Anti-interleukin-21 antibody and liraglutide for the preservation of β-cell function in adults with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled, phase 2 trial

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      The Lancet Diabetes & Endocrinology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1

          Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes

            Type 1 diabetes is a chronic autoimmune disease that leads to destruction of insulin-producing beta cells and dependence on exogenous insulin for survival. Some interventions have delayed the loss of insulin production in patients with type 1 diabetes, but interventions that might affect clinical progression before diagnosis are needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art

              Background GLP-1 receptor agonists (GLP-1 RAs) with exenatide b.i.d. first approved to treat type 2 diabetes in 2005 have been further developed to yield effective compounds/preparations that have overcome the original problem of rapid elimination (short half-life), initially necessitating short intervals between injections (twice daily for exenatide b.i.d.). Scope of review To summarize current knowledge about GLP-1 receptor agonist. Major conclusions At present, GLP-1 RAs are injected twice daily (exenatide b.i.d.), once daily (lixisenatide and liraglutide), or once weekly (exenatide once weekly, dulaglutide, albiglutide, and semaglutide). A daily oral preparation of semaglutide, which has demonstrated clinical effectiveness close to the once-weekly subcutaneous preparation, was recently approved. All GLP-1 RAs share common mechanisms of action: augmentation of hyperglycemia-induced insulin secretion, suppression of glucagon secretion at hyper- or euglycemia, deceleration of gastric emptying preventing large post-meal glycemic increments, and a reduction in calorie intake and body weight. Short-acting agents (exenatide b.i.d., lixisenatide) have reduced effectiveness on overnight and fasting plasma glucose, but maintain their effect on gastric emptying during long-term treatment. Long-acting GLP-1 RAs (liraglutide, once-weekly exenatide, dulaglutide, albiglutide, and semaglutide) have more profound effects on overnight and fasting plasma glucose and HbA 1c , both on a background of oral glucose-lowering agents and in combination with basal insulin. Effects on gastric emptying decrease over time (tachyphylaxis). Given a similar, if not superior, effectiveness for HbA 1c  reduction with additional weight reduction and no intrinsic risk of hypoglycemic episodes, GLP-1RAs are recommended as the preferred first injectable glucose-lowering therapy for type 2 diabetes, even before insulin treatment. However, GLP-1 RAs can be combined with (basal) insulin in either free- or fixed-dose preparations. More recently developed agents, in particular semaglutide, are characterized by greater efficacy with respect to lowering plasma glucose as well as body weight. Since 2016, several cardiovascular (CV) outcome studies have shown that GLP-1 RAs can effectively prevent CV events such as acute myocardial infarction or stroke and associated mortality. Therefore, guidelines particularly recommend treatment with GLP-1 RAs in patients with pre-existing atherosclerotic vascular disease (for example, previous CV events). The evidence of similar effects in lower-risk subjects is not quite as strong. Since sodium/glucose cotransporter-2 (SGLT-2) inhibitor treatment reduces CV events as well (with the effect mainly driven by a reduction in heart failure complications), the individual risk of ischemic or heart failure complications should guide the choice of treatment. GLP-1 RAs may also help prevent renal complications of type 2 diabetes. Other active research areas in the field of GLP-1 RAs are the definition of subgroups within the type 2 diabetes population who particularly benefit from treatment with GLP-1 RAs. These include pharmacogenomic approaches and the characterization of non-responders. Novel indications for GLP-1 RAs outside type 2 diabetes, such as type 1 diabetes, neurodegenerative diseases, and psoriasis, are being explored. Thus, within 15 years of their initial introduction, GLP-1 RAs have become a well-established class of glucose-lowering agents that has the potential for further development and growing impact for treating type 2 diabetes and potentially other diseases. • The GLP-1 receptor agonists class comprises seven compounds/preparations with a similar mode of action. • GLP-1 receptor agonists differ with respect to pharmacokinetic properties, duration of action, and clinical effectiveness. • Plasma glucose is lowered by effects on insulin and glucagon secretion, and by decelerating gastric emptying. • GLP-1 receptor agonists lower body weight by their influence on the central nervous system. • GLP-1 R reduce cardiovascular events (myocardial infarction, stroke, and associated mortality).
                Bookmark

                Author and article information

                Journal
                The Lancet Diabetes & Endocrinology
                The Lancet Diabetes & Endocrinology
                Elsevier BV
                22138587
                March 2021
                March 2021
                Article
                10.1016/S2213-8587(21)00019-X
                33662334
                4be853ce-b5dd-4860-801c-ad22e86b9c19
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article