2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: potential role in hypertension.

      Antioxidants & Redox Signaling
      Animals, Blood Vessels, metabolism, Diabetes Mellitus, Endoplasmic Reticulum Stress, Humans, Hypertension, Insulin Resistance, NADPH Oxidase, Reactive Oxygen Species, Signal Transduction

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactive oxygen species (ROS) are produced during normal endoplasmic reticulum (ER) metabolism. There is accumulating evidence showing that under stress conditions such as ER stress, ROS production is increased via enzymes of the NADPH oxidase (Nox) family, especially via the Nox2 and Nox4 isoforms, which are involved in the regulation of blood pressure. Hypertension is a major contributor to cardiovascular and renal disease, and it has a complex pathophysiology involving the heart, kidney, brain, vessels, and immune system. ER stress activates the unfolded protein response (UPR) signaling pathway that has prosurvival and proapoptotic components. Here, we summarize the evidence regarding the association of Nox enzymes and ER stress, and its potential contribution in the setting of hypertension, including the role of other conditions that can lead to hypertension (e.g., insulin resistance and diabetes). A better understanding of this association is currently of great interest, as it will provide further insights into the cellular mechanisms that can drive the ER stress-induced adaptive versus maladaptive pathways linked to hypertension and other cardiovascular conditions. More needs to be learnt about the precise signaling regulation of Nox(es) and ER stress in the cardiovascular system. The development of specific approaches that target individual Nox isoforms and the UPR signaling pathway may be important for the achievement of therapeutic efficacy in hypertension.

          Related collections

          Author and article information

          Journal
          23472786
          3880927
          10.1089/ars.2013.5262

          Chemistry
          Animals,Blood Vessels,metabolism,Diabetes Mellitus,Endoplasmic Reticulum Stress,Humans,Hypertension,Insulin Resistance,NADPH Oxidase,Reactive Oxygen Species,Signal Transduction

          Comments

          Comment on this article