1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The population bottleneck of the Iberian wolf impacted genetic diversity but not admixture with domestic dogs: A temporal genomic approach

      1 , 2 , 3 , 4 , 1 , 2 , 3 , 5
      Molecular Ecology
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After decades of intense persecution, the Iberian wolf subspecies faced a severe bottleneck in the 1970s that considerably reduced its range and population size, nearly leading to its extinction in central and southern Iberian Peninsula. Such population decline could have impacted the genetic diversity of Iberian wolves through different processes, namely genetic drift and dynamics of hybridization with domestic dogs. By contrasting the genomes of 68 contemporary with 54 historical samples spanning the periods before and immediately after the 1970s bottleneck, we found evidence of its impact on genetic diversity and dynamics of wolf–dog hybridization. Our genome‐wide assessment revealed that wolves and dogs form two well‐differentiated genetic groups in Iberia and that hybridization rates did not increase during the bottleneck. However, an increased number of hybrid individuals was found over time during the population re‐expansion, particularly at the edge of the wolf range. We estimated a low percentage of dog ancestry (~1.4%) in historical samples, suggesting that dog introgression was not a key driver for wolf extinction in central and southern Iberia. Our findings also unveil a significant decline in genetic diversity in contemporary samples, with the highest proportion of homozygous segments in the genome being recently inherited. Overall, our study provides unprecedented insight into the impact of a sharp decline on the Iberian wolf genome and refines our understanding of the ecological and evolutionary drivers of wolf–dog hybridization in the wild.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          PLINK: a tool set for whole-genome association and population-based linkage analyses.

          Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast model-based estimation of ancestry in unrelated individuals.

            Population stratification has long been recognized as a confounding factor in genetic association studies. Estimated ancestries, derived from multi-locus genotype data, can be used to perform a statistical correction for population stratification. One popular technique for estimation of ancestry is the model-based approach embodied by the widely applied program structure. Another approach, implemented in the program EIGENSTRAT, relies on Principal Component Analysis rather than model-based estimation and does not directly deliver admixture fractions. EIGENSTRAT has gained in popularity in part owing to its remarkable speed in comparison to structure. We present a new algorithm and a program, ADMIXTURE, for model-based estimation of ancestry in unrelated individuals. ADMIXTURE adopts the likelihood model embedded in structure. However, ADMIXTURE runs considerably faster, solving problems in minutes that take structure hours. In many of our experiments, we have found that ADMIXTURE is almost as fast as EIGENSTRAT. The runtime improvements of ADMIXTURE rely on a fast block relaxation scheme using sequential quadratic programming for block updates, coupled with a novel quasi-Newton acceleration of convergence. Our algorithm also runs faster and with greater accuracy than the implementation of an Expectation-Maximization (EM) algorithm incorporated in the program FRAPPE. Our simulations show that ADMIXTURE's maximum likelihood estimates of the underlying admixture coefficients and ancestral allele frequencies are as accurate as structure's Bayesian estimates. On real-world data sets, ADMIXTURE's estimates are directly comparable to those from structure and EIGENSTRAT. Taken together, our results show that ADMIXTURE's computational speed opens up the possibility of using a much larger set of markers in model-based ancestry estimation and that its estimates are suitable for use in correcting for population stratification in association studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recovery of large carnivores in Europe's modern human-dominated landscapes.

              The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Contributors
                Journal
                Molecular Ecology
                Molecular Ecology
                Wiley
                0962-1083
                1365-294X
                November 2023
                October 19 2023
                November 2023
                : 32
                : 22
                : 5986-5999
                Affiliations
                [1 ] CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão Universidade do Porto Vairão Portugal
                [2 ] Departamento de Biologia, Faculdade de Ciências Universidade do Porto Porto Portugal
                [3 ] BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO Vairão Portugal
                [4 ] Biodiversity Research Institute (CSIC – Oviedo University – Principality of Asturias) Oviedo University Mieres Spain
                [5 ] Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology University of Johannesburg Johannesburg South Africa
                Article
                10.1111/mec.17171
                4c3942f0-2bd0-4da2-af9c-2b6d7300d6a9
                © 2023

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article