1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-124-5p Inhibits the Progression of Gastric Cancer by Targeting MIEN1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective:

          To observe the effect of miR-124-5p on progression of gastric cancer (GC) and explore the targeting mechanism.

          Methods:

          After collecting the specimens, we used real-time fluorescence quantitative PCR to detect the miR-124-5p level of GC tissue and corresponding adjacent tissue. Then MTT test and scratch wound-healing assay were hired to evaluate the influence of miR-124-5p in GC cell (SGC-803 and SGC7901) migration and proliferation ability. The binding of miR-124-5p to migration and invasion enhancer 1 (MIEN1) was detected through dual luciferase reporter gene experiment and western blot was utilized to assay the protein level of MIEN1.

          Results:

          Compared with adjacent tissues, miR-124-5p level in GC tissues was lower significantly. MiR-124-5p mimic inhibited the metastasis and proliferation ability of SGC7901 cells and miR-124-5p inhibitor promoted the migration and proliferation ability of SGC803 cells. In addition, miR-124-5p targeted MIEN1 and negatively modulated the MIEN1 expression in SGC-803 and SGC7901 cells. Silencing MIEN1 negatively regulated the metastasis and proliferation ability of SGC7901 cells.

          Conclusion:

          MiR-124-5p inhibited the GC cell proliferation and metastasis phenotypes through MIEN1, which probably becomes a novel molecular target for clinical GC treatment.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs: genomics, biogenesis, mechanism, and function.

          MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The functions of animal microRNAs.

            MicroRNAs (miRNAs) are small RNAs that regulate the expression of complementary messenger RNAs. Hundreds of miRNA genes have been found in diverse animals, and many of these are phylogenetically conserved. With miRNA roles identified in developmental timing, cell death, cell proliferation, haematopoiesis and patterning of the nervous system, evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of mRNA translation and stability by microRNAs.

              MicroRNAs (miRNAs) are small noncoding RNAs that extensively regulate gene expression in animals, plants, and protozoa. miRNAs function posttranscriptionally by usually base-pairing to the mRNA 3'-untranslated regions to repress protein synthesis by mechanisms that are not fully understood. In this review, we describe principles of miRNA-mRNA interactions and proteins that interact with miRNAs and function in miRNA-mediated repression. We discuss the multiple, often contradictory, mechanisms that miRNAs have been reported to use, which cause translational repression and mRNA decay. We also address the issue of cellular localization of miRNA-mediated events and a role for RNA-binding proteins in activation or relief of miRNA repression.
                Bookmark

                Author and article information

                Journal
                Technol Cancer Res Treat
                Technol Cancer Res Treat
                TCT
                sptct
                Technology in Cancer Research & Treatment
                SAGE Publications (Sage CA: Los Angeles, CA )
                1533-0346
                1533-0338
                22 December 2020
                2020
                : 19
                : 1533033820979199
                Affiliations
                [1 ]Department of General Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, China
                [2 ]Department of Oncology, The Seventh Medical Center of PLA General Hospital, Beijing, China
                Author notes
                [*]Feng Liang, Department of General Surgery, The Fivth Medical Center of PLA General Hospital, 8 Dongdajie, Fengtai District, Beijing 100071, China. Email: liangfeng@ 123456tom.com
                Author information
                https://orcid.org/0000-0002-8985-834X
                Article
                10.1177_1533033820979199
                10.1177/1533033820979199
                7758558
                33349155
                4c40aaff-cf3b-428b-a34d-a9625f109055
                © The Author(s) 2020

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 30 June 2020
                : 19 October 2020
                : 30 October 2020
                Categories
                Original Article
                Custom metadata
                January-December 2020
                ts3

                mir-124-5p,gastric cancer,mien1,cell migration and invasion

                Comments

                Comment on this article