170
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Site-Directed Spin Labeling Reveals Pentameric Ligand-Gated Ion Channel Gating Motions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pentameric ligand-gated ion channels (pLGICs) are neurotransmitter-activated receptors that mediate fast synaptic transmission. In pLGICs, binding of agonist to the extracellular domain triggers a structural rearrangement that leads to the opening of an ion-conducting pore in the transmembrane domain and, in the continued presence of neurotransmitter, the channels desensitize (close). The flexible loops in each subunit that connect the extracellular binding domain (loops 2, 7, and 9) to the transmembrane channel domain (M2–M3 loop) are essential for coupling ligand binding to channel gating. Comparing the crystal structures of two bacterial pLGIC homologues, ELIC and the proton-activated GLIC, suggests channel gating is associated with rearrangements in these loops, but whether these motions accurately predict the motions in functional lipid-embedded pLGICs is unknown. Here, using site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and functional GLIC channels reconstituted into liposomes, we examined if, and how far, the loops at the ECD/TMD gating interface move during proton-dependent gating transitions from the resting to desensitized state. Loop 9 moves ∼9 Å inward toward the channel lumen in response to proton-induced desensitization. Loop 9 motions were not observed when GLIC was in detergent micelles, suggesting detergent solubilization traps the protein in a nonactivatable state and lipids are required for functional gating transitions. Proton-induced desensitization immobilizes loop 2 with little change in position. Proton-induced motion of the M2–M3 loop was not observed, suggesting its conformation is nearly identical in closed and desensitized states. Our experimentally derived distance measurements of spin-labeled GLIC suggest ELIC is not a good model for the functional resting state of GLIC, and that the crystal structure of GLIC does not correspond to a desensitized state. These findings advance our understanding of the molecular mechanisms underlying pLGIC gating.

          Author Summary

          Ligand-gated ion channels reside in the membranes of nerve and muscle cells. These proteins form channels that span the membrane, where they transduce chemical signals into changes in electrical excitability. Neurotransmitters bind to the extracellular surface of these proteins to trigger global structural rearrangements that open the channel, allowing ions to flow across the cell membrane. In the continued presence of neurotransmitters, the channels desensitize and close. Channel opening and closing regulate muscle contraction and signaling in the brain, and defects in these channels lead to a variety of diseases. While crystal structures have provided frozen snapshots of these proteins in presumed closed and open channel states, little is known about how the channels desensitize and move during actual signaling events. Here, we applied a technique to investigate the structure and local dynamics of proteins known as site-directed spin labeling to a prototypical ligand-gated channel, GLIC. We directly quantified ligand-induced motions in regions at the boundary between the binding domain (loops 2 and 9) and the channel domain (M2–M3 loop). We show that a large movement of loop 9 and an immobilization of loop 2, which rearranges the interface between the binding and channel domains, accompanies GLIC channel gating transitions into a desensitized state. These data provide new insights into the protein movements that underlie electrochemical transmission of signals between cells.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Dead-time free measurement of dipole-dipole interactions between electron spins.

          A four-pulse version of the pulse double electron-electron resonance (DEER) experiment is presented, which is designed for the determination of interradical distances on a nanoscopic length-scale. With the new pulse sequence electron-electron couplings can be studied without dead-time artifacts, so that even broad distributions of electron-electron distances can be characterized. A version of the experiment that uses a pulse train in the detection period exhibits improved signal-to-noise ratio. Tests on two nitroxide biradicals with known length indicate that the accessible range of distances extends from about 1.5 to 8 nm. The four-pulse DEER spectra of an ionic spin probe in an ionomer exhibit features due to probe molecules situated both on the same and on different ion clusters. The former feature provides information on the cluster size and is inaccessible with previous methods. Copyright 2000 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation.

            Pentameric ligand-gated ion channels from the Cys-loop family mediate fast chemo-electrical transduction, but the mechanisms of ion permeation and gating of these membrane proteins remain elusive. Here we present the X-ray structure at 2.9 A resolution of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel homologue (GLIC) at pH 4.6 in an apparently open conformation. This cationic channel is known to be permanently activated by protons. The structure is arranged as a funnel-shaped transmembrane pore widely open on the outer side and lined by hydrophobic residues. On the inner side, a 5 A constriction matches with rings of hydrophilic residues that are likely to contribute to the ionic selectivity. Structural comparison with ELIC, a bacterial homologue from Erwinia chrysanthemi solved in a presumed closed conformation, shows a wider pore where the narrow hydrophobic constriction found in ELIC is removed. Comparative analysis of GLIC and ELIC reveals, in concert, a rotation of each extracellular beta-sandwich domain as a rigid body, interface rearrangements, and a reorganization of the transmembrane domain, involving a tilt of the M2 and M3 alpha-helices away from the pore axis. These data are consistent with a model of pore opening based on both quaternary twist and tertiary deformation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              X-ray structure of a prokaryotic pentameric ligand-gated ion channel.

              Pentameric ligand-gated ion channels (pLGICs) are key players in the early events of electrical signal transduction at chemical synapses. The family codes for a structurally conserved scaffold of channel proteins that open in response to the binding of neurotransmitter molecules. All proteins share a pentameric organization of identical or related subunits that consist of an extracellular ligand-binding domain followed by a transmembrane channel domain. The nicotinic acetylcholine receptor (nAChR) is the most thoroughly studied member of the pLGIC family (for recent reviews see refs 1-3). Two sources of structural information provided an architectural framework for the family. The structure of the soluble acetylcholine-binding protein (AChBP) defined the organization of the extracellular domain and revealed the chemical basis of ligand interaction. Electron microscopy studies of the nAChR from Torpedo electric ray have yielded a picture of the full-length protein and have recently led to the interpretation of an electron density map at 4.0 A resolution. Despite the wealth of experimental information, high-resolution structures of any family member have so far not been available. Until recently, the pLGICs were believed to be only expressed in multicellular eukaryotic organisms. The abundance of prokaryotic genome sequences, however, allowed the identification of several homologous proteins in bacterial sources. Here we present the X-ray structure of a prokaryotic pLGIC from the bacterium Erwinia chrysanthemi (ELIC) at 3.3 A resolution. Our study reveals the first structure of a pLGIC at high resolution and provides an important model system for the investigation of the general mechanisms of ion permeation and gating within the family.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                November 2013
                November 2013
                19 November 2013
                : 11
                : 11
                : e1001714
                Affiliations
                [1 ]Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
                [2 ]Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
                University of Texas at Austin, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: CDD SMH CSK CC. Performed the experiments: CDD BG SMH JMR VAG GMD AMS KS CSK. Analyzed and discussed the data: CDD CSK CC. Contributed reagents/materials/analysis tools: CSK CC. Wrote and edited the paper: CDD CSK CC. Made mutants: CDD VAG SMH BG. Conducted two-electrode voltage clamp recordings in oocytes: SMH BG. Purified the protein: CDD JMR VAG GMD AMS. Reconstituted GLIC protein into liposomes, recorded and analyzed single-channel currents in planar lipid bilayers: CDD. Collected and analyzed EPR data: CSK. Built homology model of GLIC: BG KS. Used computer modeling to estimate interspin distances: KS. Supervised the project: CC.

                Article
                PBIOLOGY-D-13-02178
                10.1371/journal.pbio.1001714
                3833874
                24260024
                4cd1abf0-7725-4cab-998a-9b8d9fd7c236
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 June 2013
                : 8 October 2013
                Page count
                Pages: 14
                Funding
                This work was supported by an NIH grant (NS34727) to CC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Life sciences
                Life sciences

                Comments

                Comment on this article