116
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanistic Insight into the Pathology of Polyalanine Expansion Disorders Revealed by a Mouse Model for X Linked Hypopituitarism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polyalanine expansions in transcription factors have been associated with eight distinct congenital human diseases. It is thought that in each case the polyalanine expansion causes misfolding of the protein that abrogates protein function. Misfolded proteins form aggregates when expressed in vitro; however, it is less clear whether aggregation is of relevance to these diseases in vivo. To investigate this issue, we used targeted mutagenesis of embryonic stem (ES) cells to generate mice with a polyalanine expansion mutation in Sox3 ( Sox3-26ala) that is associated with X-linked Hypopituitarism (XH) in humans. By investigating both ES cells and chimeric mice, we show that endogenous polyalanine expanded SOX3 does not form protein aggregates in vivo but rather is present at dramatically reduced levels within the nucleus of mutant cells. Importantly, the residual mutant protein of chimeric embryos is able to rescue a block in gastrulation but is not sufficient for normal development of the hypothalamus, a region that is functionally compromised in Sox3 null embryos and individuals with XH. Together, these data provide the first definitive example of a disease-relevant PA mutant protein that is both nuclear and functional, thereby manifesting as a partial loss-of-function allele.

          Author Summary

          Alanine is one of the 20 amino acid building blocks from which proteins are generated. Nearly 500 human proteins contain stretches of consecutive alanine residues ranging from 4 to 20 amino acids in length. Whilst the function of these polyalanine (PA) tracts remains unknown, they are interesting because DNA changes (mutations) that increase their length above a threshold are responsible for nine different human disorders. In vitro studies indicate that expanded PA proteins misfold and aggregate, suggesting that there may be a common “gain-of-function” mechanism that underpins this group of disorders. However, these data are difficult to reconcile with genetic studies, which indicate that most PA mutations cause protein loss-of-function. Therefore, to investigate the pathological mechanism of PA disorders we generated a mouse model of X-linked Hypopituitarism (XH), a disease caused by PA expansion in the SOX3 protein. Strikingly, we found that the mouse version of the disease-causing protein was almost completely cleared from cells and that aggregates do not form in vivo. These data explain why this type of mutation causes protein loss-of-function and reveals why nature limits the length of PA stretches.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture.

          Mouse embryonic stem (ES) cells are competent for production of all fetal and adult cell types. However, the utility of ES cells as a developmental model or as a source of defined cell populations for pharmaceutical screening or transplantation is compromised because their differentiation in vitro is poorly controlled. Specification of primary lineages is not understood and consequently differentiation protocols are empirical, yielding variable and heterogeneous outcomes. Here we report that neither multicellular aggregation nor coculture is necessary for ES cells to commit efficiently to a neural fate. In adherent monoculture, elimination of inductive signals for alternative fates is sufficient for ES cells to develop into neural precursors. This process is not a simple default pathway, however, but requires autocrine fibroblast growth factor (FGF). Using flow cytometry quantitation and recording of individual colonies, we establish that the bulk of ES cells undergo neural conversion. The neural precursors can be purified to homogeneity by fluorescence activated cell sorting (FACS) or drug selection. This system provides a platform for defining the molecular machinery of neural commitment and optimizing the efficiency of neuronal and glial cell production from pluripotent mammalian stem cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Repeat expansion disease: progress and puzzles in disease pathogenesis.

            Repeat expansion mutations cause at least 22 inherited neurological diseases. The complexity of repeat disease genetics and pathobiology has revealed unexpected shared themes and mechanistic pathways among the diseases, such as RNA toxicity. Also, investigation of the polyglutamine diseases has identified post-translational modification as a key step in the pathogenic cascade and has shown that the autophagy pathway has an important role in the degradation of misfolded proteins--two themes that are likely to be relevant to the entire neurodegeneration field. Insights from repeat disease research are catalysing new lines of study that should not only elucidate molecular mechanisms of disease but also highlight opportunities for therapeutic intervention for these currently untreatable disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation.

              Embryonic stem (ES) cells differentiate into neuroectodermal progenitors when cultured as floating aggregates in serum-free conditions. Here, we show that strict removal of exogenous patterning factors during early differentiation steps induces efficient generation of rostral hypothalamic-like progenitors (Rax(+)/Six3(+)/Vax1(+)) in mouse ES cell-derived neuroectodermal cells. The use of growth factor-free chemically defined medium is critical and even the presence of exogenous insulin, which is commonly used in cell culture, strongly inhibits the differentiation via the Akt-dependent pathway. The ES cell-derived Rax(+) progenitors generate Otp(+)/Brn2(+) neuronal precursors (characteristic of rostral-dorsal hypothalamic neurons) and subsequently magnocellular vasopressinergic neurons that efficiently release the hormone upon stimulation. Differentiation markers of rostral-ventral hypothalamic precursors and neurons are induced from ES cell-derived Rax(+) progenitors by treatment with Shh. Thus, in the absence of exogenous growth factors in medium, the ES cell-derived neuroectodermal cells spontaneously differentiate into rostral (particularly rostral-dorsal) hypothalamic-like progenitors, which generate characteristic hypothalamic neuroendocrine neurons in a stepwise fashion, as observed in vivo. These findings indicate that, instead of the addition of inductive signals, minimization of exogenous patterning signaling plays a key role in rostral hypothalamic specification of neural progenitors derived from pluripotent cells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2013
                March 2013
                7 March 2013
                : 9
                : 3
                : e1003290
                Affiliations
                [1 ]School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
                [2 ]Pituitary Research Unit, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
                University of Michigan, United States of America
                Author notes

                PT is supported by a Fellowship from Pfizer Australia. This does not alter the authors' adherence to all the PLOS Genetics policies on sharing data and materials.

                Conceived and designed the experiments: PT JH SP NR DM. Performed the experiments: JH SP NR DM LR. Analyzed the data: JH PT SP NR DM LR. Wrote the paper: PT JH.

                Article
                PGENETICS-D-12-01785
                10.1371/journal.pgen.1003290
                3591313
                23505376
                00344c62-05cc-416e-9739-9d7f78b65cbf
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 July 2012
                : 16 December 2012
                Page count
                Pages: 9
                Funding
                This work was supported by the Australian Health and Medical Research Council ( http://www.nhmrc.gov.au/). PT is a Pfizer Australia Research Fellow. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Developmental Biology
                Morphogenesis
                Birth Defects
                Stem Cells
                Neural Stem Cells
                Cell Differentiation
                Molecular Development
                Genetics
                Genetic Mutation
                Mutation Types
                Human Genetics
                Autosomal Recessive
                Gene Expression
                Gene Function
                Genetics of Disease

                Genetics
                Genetics

                Comments

                Comment on this article