18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional interaction of neuronal Cav1.3 L-type calcium channel with ryanodine receptor type 2 in the rat hippocampus.

      The Journal of Biological Chemistry
      Animals, Calcium Channels, genetics, metabolism, Cells, Cultured, Central Nervous System, Electrophysiology, Gene Expression Regulation, Hippocampus, Patch-Clamp Techniques, Protein Binding, RNA, Messenger, Rats, Rats, Sprague-Dawley, Ryanodine Receptor Calcium Release Channel, Tissue Culture Techniques

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuronal L-type Ca(2+) channels do not support synaptic transmission, but they play an essential role in synaptic activity-dependent gene expression. Ca(v)1.2 and Ca(v)1.3 are the two most widely expressed L-type Ca(2+) channels in neurons and have different biophysical and subcellular distributions. The function of the Ca(v) 1.3 L-type Ca(2+) channel and its cellular mechanisms in the central nervous system are poorly understood. In this study, using a yeast two-hybrid assay, we found that the N terminus of the rat Ca(v)1.3 alpha(1) subunit interacts with a partial N-terminal amino acid sequence of ryanodine receptor type 2 (RyR2). Reverse transcription-PCR and Western blot assays revealed high expression of both Ca(v)1.3 and RyR2 in the rat hippocampus. We also demonstrate a physical association of Ca(v)1.3 with RyR2 using co-immunoprecipitation assays. Moreover, immunocytochemistry revealed prominent co-localization between Ca(v)1.3 and RyR2 in hippocampal neurons. Depolarizing cells by an acute treatment of a high concentration of KCl (high-K, 60 mm) showed that the activation of L-type Ca(2+) channels induced RyR opening and led to RyR-dependent Ca(2+) release, even in the absence of extracellular Ca(2+). Furthermore, we found that RyR2 mRNA itself is increased by long term treatment of high-K via activation of L-type Ca(2+) channels. These acute and long term effects of high-K on RyRs were selectively blocked by small interfering RNA-mediated silencing of Ca(v)1.3. These results suggest a physical and functional interaction between Ca(v)1.3 and RyR2 and important implications of Ca(v)1.3/RyR2 clusters in translating synaptic activity into alterations in gene expression.

          Related collections

          Author and article information

          Comments

          Comment on this article