14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive Analysis of Gene Expression Changes and Validation in Hepatocellular Carcinoma

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          This study aimed to analyze the involvement of hub genes in hepatocellular carcinoma.

          Methods

          Four series were used in this study: GSE45267, GSE84402, and GSE101685 from GPL570 platform in the Gene Expression Omnibus and the other from The Cancer Genome Atlas. The gene audition was completed using R software and Venn diagrams. The outcome, Gene Ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes preliminary analyses of differentially expressed genes were performed using the R software. A string image was obtained using the Search Tool for the Retrieval of Interacting Genes. The protein–protein interaction network was examined using Cytoscape software. The corrplot package was used to analyze the correlation of genes. Human Protein Atlas was used to confirm the protein levels. Univariate Cox regression was used to analyze whether these genes were related to survival. UALCAN was used to confirm the effect of these genes on patient survival.

          Results

          A total of 107 differentially expressed genes from 491 patients with hepatocellular carcinoma and 119 normal individuals were selected in this study. Cytoscape revealed 25 central nodes from the 107 genes. CCNB1, CDK1, CCNA2, PTTG1, and CDC20 were selected based on the cell cycle pathway. A significant correlation was found among the 6 DEGs. The transcription levels and protein levels of these genes were verified in cells and human tissue samples. The overall survival for these genes was analyzed using univariate Cox regression and UALCAN.

          Conclusion

          CCNB1, CDK1, CDC20, PTTG1, CCNA2, and TTK were overexpressed and correlated in hepatocellular carcinoma cells and tumors. The results might help explore the prognosis and diagnostic markers of HCC.

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            KEGG: kyoto encyclopedia of genes and genomes.

            M Kanehisa (2000)
            KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteomics. Tissue-based map of the human proteome.

              Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body. Copyright © 2015, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                ott
                ott
                OncoTargets and therapy
                Dove
                1178-6930
                15 February 2021
                2021
                : 14
                : 1021-1031
                Affiliations
                [1 ]Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, People’s Republic of China
                [2 ]Department of ICU, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, People’s Republic of China
                [3 ]Department of Ophthalmology, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, People’s Republic of China
                Author notes
                Correspondence: Xiao Hu Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University , 16 Jiangsu Road, Qingdao, Shandong, People’s Republic of ChinaTel +86 18661808808 Email 8371270@qq.com
                Author information
                http://orcid.org/0000-0003-2460-3933
                http://orcid.org/0000-0001-7092-4127
                Article
                294500
                10.2147/OTT.S294500
                7894825
                33623390
                4cf59136-bc7d-459d-ac68-e48fa5468a7b
                © 2021 Zhang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 27 November 2020
                : 03 February 2021
                Page count
                Figures: 9, Tables: 1, References: 26, Pages: 11
                Funding
                Funded by: Youth Project ZR2016HQ15 of the Natural Science Foundation of Shandong Province;
                The study was supported by the Youth Project ZR2016HQ15 of the Natural Science Foundation of Shandong Province and the Youth Project 81602083 of the National Natural Science Foundation of China.
                Categories
                Original Research

                Oncology & Radiotherapy
                cell cycle,differentially expressed genes network analysis,hepatocellular carcinoma,oncogene,prognosis analysis

                Comments

                Comment on this article