7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tryptophan Metabolites Along the Microbiota-Gut-Brain Axis: An Interkingdom Communication System Influencing the Gut in Health and Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ‘microbiota-gut-brain axis’ plays a fundamental role in maintaining host homeostasis, and different immune, hormonal, and neuronal signals participate to this interkingdom communication system between eukaryota and prokaryota. The essential aminoacid tryptophan, as a precursor of several molecules acting at the interface between the host and the microbiota, is fundamental in the modulation of this bidirectional communication axis. In the gut, tryptophan undergoes 3 major metabolic pathways, the 5-HT, kynurenine, and AhR ligand pathways, which may be directly or indirectly controlled by the saprophytic flora. The importance of tryptophan metabolites in the modulation of the gastrointestinal tract is suggested by several preclinical and clinical studies; however, a thorough revision of the available literature has not been accomplished yet. Thus, this review attempts to cover the major aspects on the role of tryptophan metabolites in host-microbiota cross-talk underlaying regulation of gut functions in health conditions and during disease states, with particular attention to 2 major gastrointestinal diseases, such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), both characterized by psychiatric disorders. Research in this area opens the possibility to target tryptophan metabolism to ameliorate the knowledge on the pathogenesis of both diseases, as well as to discover new therapeutic strategies based either on conventional pharmacological approaches or on the use of pre- and probiotics to manipulate the microbial flora.

          Related collections

          Most cited references224

          • Record: found
          • Abstract: found
          • Article: not found

          Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis.

          Toll-like receptors (TLRs) play a crucial role in host defense against microbial infection. The microbial ligands recognized by TLRs are not unique to pathogens, however, and are produced by both pathogenic and commensal microorganisms. It is thought that an inflammatory response to commensal bacteria is avoided due to sequestration of microflora by surface epithelia. Here, we show that commensal bacteria are recognized by TLRs under normal steady-state conditions, and this interaction plays a crucial role in the maintenance of intestinal epithelial homeostasis. Furthermore, we find that activation of TLRs by commensal microflora is critical for the protection against gut injury and associated mortality. These findings reveal a novel function of TLRs-control of intestinal epithelial homeostasis and protection from injury-and provide a new perspective on the evolution of host-microbial interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems

            The gut-brain axis (GBA) consists of bidirectional communication between the central and the enteric nervous system, linking emotional and cognitive centers of the brain with peripheral intestinal functions. Recent advances in research have described the importance of gut microbiota in influencing these interactions. This interaction between microbiota and GBA appears to be bidirectional, namely through signaling from gut-microbiota to brain and from brain to gut-microbiota by means of neural, endocrine, immune, and humoral links. In this review we summarize the available evidence supporting the existence of these interactions, as well as the possible pathophysiological mechanisms involved. Most of the data have been acquired using technical strategies consisting in germ-free animal models, probiotics, antibiotics, and infection studies. In clinical practice, evidence of microbiota-GBA interactions comes from the association of dysbiosis with central nervous disorders (i.e. autism, anxiety-depressive behaviors) and functional gastrointestinal disorders. In particular, irritable bowel syndrome can be considered an example of the disruption of these complex relationships, and a better understanding of these alterations might provide new targeted therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Brain-Gut-Microbiome Axis

              Preclinical and clinical studies have shown bidirectional interactions within the brain-gut-microbiome axis. Gut microbes communicate to the central nervous system through at least 3 parallel and interacting channels involving nervous, endocrine, and immune signaling mechanisms. The brain can affect the community structure and function of the gut microbiota through the autonomic nervous system, by modulating regional gut motility, intestinal transit and secretion, and gut permeability, and potentially through the luminal secretion of hormones that directly modulate microbial gene expression. A systems biological model is proposed that posits circular communication loops amid the brain, gut, and gut microbiome, and in which perturbation at any level can propagate dysregulation throughout the circuit. A series of largely preclinical observations implicates alterations in brain-gut-microbiome communication in the pathogenesis and pathophysiology of irritable bowel syndrome, obesity, and several psychiatric and neurologic disorders. Continued research holds the promise of identifying novel therapeutic targets and developing treatment strategies to address some of the most debilitating, costly, and poorly understood diseases.
                Bookmark

                Author and article information

                Journal
                Int J Tryptophan Res
                Int J Tryptophan Res
                TRY
                sptry
                International Journal of Tryptophan Research : IJTR
                SAGE Publications (Sage UK: London, England )
                1178-6469
                11 June 2020
                2020
                : 13
                : 1178646920928984
                Affiliations
                [1-1178646920928984]Department of Medicine and Surgery, University of Insubria, Varese, Italy
                Author notes
                [*]Cristina Giaroni, Department of Medicine and Surgery, University of Insubria, Via H. Dunant 5, 21100 Varese, Italy. Email: cristina.giaroni@ 123456uninsubria.it
                [*]

                These authors equally contributed.

                Author information
                https://orcid.org/0000-0001-5027-880X
                https://orcid.org/0000-0002-3760-3441
                https://orcid.org/0000-0003-0088-2712
                Article
                10.1177_1178646920928984
                10.1177/1178646920928984
                7290275
                32577079
                4d01e92c-90d1-46d0-8a9f-617e3c85bc1a
                © The Author(s) 2020

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 29 March 2020
                : 2 May 2020
                Categories
                Review
                Custom metadata
                January-December 2020
                ts1

                Biochemistry
                microbiota-gut-brain axis,central nervous system,enteric nervous system,enteric microenvironment,tryptophan,kynurenine,dysbiosis,irritable bowel syndrome (ibs),inflammatory bowel disease (ibd)

                Comments

                Comment on this article