6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Haloarchaeal Carotenoids: Healthy Novel Compounds from Extreme Environments

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Haloarchaea are halophilic microorganisms belonging to the archaea domain that inhabit salty environments (mainly soils and water) all over the world. Most of the genera included in this group can produce carotenoids at significant concentrations (even wild-type strains). The major carotenoid produced by the cells is bacterioruberin (and its derivatives), which is only produced by this kind of microbes and few bacteria, like Micrococcus roseus. Nevertheless, the understanding of carotenoid metabolism in haloarchaea, its regulation, and the roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. Besides, potential biotechnological uses of haloarchaeal pigments are poorly explored. This work summarises what it has been described so far about carotenoids from haloarchaea and their production at mid- and large-scale, paying special attention to the most recent findings on the potential uses of haloarchaeal pigments in biomedicine.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Potential commercial applications of microbial surfactants.

          Surfactants are surface-active compounds capable of reducing surface and interfacial tension at the interfaces between liquids, solids and gases, thereby allowing them to mix or disperse readily as emulsions in water or other liquids. The enormous market demand for surfactants is currently met by numerous synthetic, mainly petroleum-based, chemical surfactants. These compounds are usually toxic to the environment and non-biodegradable. They may bio-accumulate and their production, processes and by-products can be environmentally hazardous. Tightening environmental regulations and increasing awareness for the need to protect the ecosystem have effectively resulted in an increasing interest in biosurfactants as possible alternatives to chemical surfactants. Biosurfactants are amphiphilic compounds of microbial origin with considerable potential in commercial applications within various industries. They have advantages over their chemical counterparts in biodegradability and effectiveness at extreme temperature or pH and in having lower toxicity. Biosurfactants are beginning to acquire a status as potential performance-effective molecules in various fields. At present biosurfactants are mainly used in studies on enhanced oil recovery and hydrocarbon bioremediation. The solubilization and emulsification of toxic chemicals by biosurfactants have also been reported. Biosurfactants also have potential applications in agriculture, cosmetics, pharmaceuticals, detergents, personal care products, food processing, textile manufacturing, laundry supplies, metal treatment and processing, pulp and paper processing and paint industries. Their uses and potential commercial applications in these fields are reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications.

            A. Oren (2002)
            The phylogenetic diversity of microorganisms living at high salt concentrations is surprising. Halophiles are found in each of the three domains: Archaea, Bacteria, and Eucarya. The metabolic diversity of halophiles is great as well: they include oxygenic and anoxygenic phototrophs, aerobic heterotrophs, fermenters, denitrifiers, sulfate reducers, and methanogens. The diversity of metabolic types encountered decreases with salinity. The upper salinity limit at which each dissimilatory process takes place is correlated with the amount of energy generated and the energetic cost of osmotic adaptation. Our understanding of the biodiversity in salt-saturated environments has increased greatly in recent years. Using a combination of culture techniques, molecular biological methods, and chemotaxonomic studies, we have obtained information on the nature of the halophilic Archaea as well as the halophilic Bacteria that inhabit saltern crystallizer ponds. Several halophilic microorganisms are being exploited in biotechnology. In some cases, such as the production of ectoine, the product is directly related to the halophilic behavior of the producing microorganism. In other cases, such as the extraction of beta-carotene from Dunaliella or the potential use of Haloferax species for the production of poly-beta-hydroxyalkanoate or extracellular polysaccharides, similar products can be obtained from non-halophiles, but halophilic microorganisms may present advantages over the use of non-halophilic counterparts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Potential of halotolerant and halophilic microorganisms for biotechnology.

              Halotolerant or halophilic microorganisms, able to live in saline environments, offer a multitude of actual or potential applications in various fields of biotechnology. The technical applications of bacteriorhodopsin comprise holography, spatial light modulators, optical computing, and optical memories. Compatible solutes are useful as stabilizers of biomolecules and whole cells, salt antagonists, or stress-protective agents. Biopolymers, such as biosurfactants and exopolysaccharides, are of interest for microbially enhanced oil recovery. Other useful biosubstances are enzymes, such as new isomerases and hydrolases, that are active and stable at high salt contents. Halotolerant microorganisms play an essential role in food biotechnology for the production of fermented food and food supplements. The degradation or transformation of a range of organic pollutants and the production of alternative energy are other fields of applications of these groups of extremophiles.
                Bookmark

                Author and article information

                Journal
                Mar Drugs
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                06 September 2019
                September 2019
                : 17
                : 9
                : 524
                Affiliations
                [1 ]Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain
                [2 ]Algal Biotechnology Group, University of Huelva and Marine International Campus of Excellence (CEIMAR), CIDERTA and Faculty of Sciences, 21071 Huelva, Spain (I.G.) (C.V.)
                Author notes
                [* ]Correspondence: rosa.martinez@ 123456ua.es ; Tel.: +34-965-903-400 (ext. 1258)
                Author information
                https://orcid.org/0000-0003-2679-135X
                Article
                marinedrugs-17-00524
                10.3390/md17090524
                6780574
                31500208
                4d320bb1-1521-4ff0-85a3-cf4916cb2aa2
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 August 2019
                : 02 September 2019
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                haloarchaea,isoprenoid,carotenoids,bacterioruberin,natural biosources,microbial blooms,antioxidant

                Comments

                Comment on this article