1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The impact of Zn doping on CdTe quantum dots-protein corona formation and the subsequent toxicity at the molecular and cellular level

      , , , , ,
      Chemico-Biological Interactions
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d1173791e101">Understanding the formation of protein corona (PC) is of vital importance for exploring the toxicity of nanoparticles and promoting their safe applications. In this study, CdTe QDs doping with 0, 1%, 5% and 10% Zn were synthesized using one-pot hydrothermal methods. Afterwards, this study explored and compared the formation of pure and Zn doped-QDs PC as well as the subsequent molecular and cellular toxicity. Result found that Zn doping regulated the toxicity of Cd-QDs by controlling their ability to adsorb serum proteins. The adsorption to Cd-QDs induced the dispersion, unfolding, secondary structural changes and the activity loss of bovine serum albumin (BSA). Among the synthesized Cd-QDs, 10%Zn-QDs exhibited the highest fluorescence quantum yield and lowest molecular toxicity. The formations of pure QDs and 10%Zn-QDs with BSA corona are majorly driven by different forces with different patterns. The regulation of BSA on the cytotoxicity differences of pure QDs and 10%Zn-QDs was similar with fetal bovine serum, proving the significant contribution of BSA to the cytotoxicity of Cd-QDs PC. Compared with pure QDs PC, the higher cytotoxicity and oxidative stress level of 10%Zn-QDs PC were correlated with higher intracellular [Cd2+]. Both larger amount of BSA adsorption and higher level of intracellular reactive oxygen species could accelerate the dissolution rates of 10%Zn-QDs and thus result in higher intracellular [Cd2+]. </p>

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles.

          Due to their small size, nanoparticles have distinct properties compared with the bulk form of the same materials. These properties are rapidly revolutionizing many areas of medicine and technology. Despite the remarkable speed of development of nanoscience, relatively little is known about the interaction of nanoscale objects with living systems. In a biological fluid, proteins associate with nanoparticles, and the amount and presentation of the proteins on the surface of the particles leads to an in vivo response. Proteins compete for the nanoparticle "surface," leading to a protein "corona" that largely defines the biological identity of the particle. Thus, knowledge of rates, affinities, and stoichiometries of protein association with, and dissociation from, nanoparticles is important for understanding the nature of the particle surface seen by the functional machinery of cells. Here we develop approaches to study these parameters and apply them to plasma and simple model systems, albumin and fibrinogen. A series of copolymer nanoparticles are used with variation of size and composition (hydrophobicity). We show that isothermal titration calorimetry is suitable for studying the affinity and stoichiometry of protein binding to nanoparticles. We determine the rates of protein association and dissociation using surface plasmon resonance technology with nanoparticles that are thiol-linked to gold, and through size exclusion chromatography of protein-nanoparticle mixtures. This method is less perturbing than centrifugation, and is developed into a systematic methodology to isolate nanoparticle-associated proteins. The kinetic and equilibrium binding properties depend on protein identity as well as particle surface characteristics and size.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake.

            Delivery and toxicity are critical issues facing nanomedicine research. Currently, there is limited understanding and connection between the physicochemical properties of a nanomaterial and its interactions with a physiological system. As a result, it remains unclear how to optimally synthesize and chemically modify nanomaterials for in vivo applications. It has been suggested that the physicochemical properties of a nanomaterial after synthesis, known as its "synthetic identity", are not what a cell encounters in vivo. Adsorption of blood components and interactions with phagocytes can modify the size, aggregation state, and interfacial composition of a nanomaterial, giving it a distinct "biological identity". Here, we investigate the role of size and surface chemistry in mediating serum protein adsorption to gold nanoparticles and their subsequent uptake by macrophages. Using label-free liquid chromatography tandem mass spectrometry, we find that over 70 different serum proteins are heterogeneously adsorbed to the surface of gold nanoparticles. The relative density of each of these adsorbed proteins depends on nanoparticle size and poly(ethylene glycol) grafting density. Variations in serum protein adsorption correlate with differences in the mechanism and efficiency of nanoparticle uptake by a macrophage cell line. Macrophages contribute to the poor efficiency of nanomaterial delivery into diseased tissues, redistribution of nanomaterials within the body, and potential toxicity. This study establishes principles for the rational design of clinically useful nanomaterials. © 2011 American Chemical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.

              Transition metal ions are key elements of various biological processes ranging from oxygen formation to hypoxia sensing, and therefore, their homeostasis is maintained within strict limits through tightly regulated mechanisms of uptake, storage and secretion. The breakdown of metal ion homeostasis can lead to an uncontrolled formation of reactive oxygen species, ROS (via the Fenton reaction, which produces hydroxyl radicals), and reactive nitrogen species, RNS, which may cause oxidative damage to biological macromolecules such as DNA, proteins and lipids. An imbalance between the formation of free radicals and their elimination by antioxidant defense systems is termed oxidative stress. Most vulnerable to free radical attack is the cell membrane which may undergo enhanced lipid peroxidation, finally producing mutagenic and carcinogenic malondialdehyde and 4-hydroxynonenal and other exocyclic DNA adducts. While redox-active iron (Fe) and copper (Cu) undergo redox-cycling reactions, for a second group of redox-inactive metals such as arsenic (As) and cadmium (Cd), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. While arsenic is known to bind directly to critical thiols, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. Redox-inert zinc (Zn) is the most abundant metal in the brain and an essential component of numerous proteins involved in biological defense mechanisms against oxidative stress. The depletion of zinc may enhance DNA damage by impairing DNA repair mechanisms. Intoxication of an organism by arsenic and cadmium may lead to metabolic disturbances of redox-active copper and iron, with the occurrence of oxidative stress induced by the enhanced formation of ROS/RNS. Oxidative stress occurs when excessive formation of ROS overwhelms the antioxidant defense system, as is maintained by antioxidants such as ascorbic acid, alpha-tocopherol, glutathione (GSH), carotenoids, flavonoids and antioxidant enzymes which include SOD, catalase and glutathione peroxidase. This review summarizes current views regarding the role of redox-active/inactive metal-induced formation of ROS, and modifications to biomolecules in human disease such as cancer, cardiovascular disease, metabolic disease, Alzheimer's disease, Parkinson's disease, renal disease, blood disorders and other disease. The involvement of metals in DNA repair mechanisms, tumor suppressor functions and interference with signal transduction pathways are also discussed.
                Bookmark

                Author and article information

                Journal
                Chemico-Biological Interactions
                Chemico-Biological Interactions
                Elsevier BV
                00092797
                March 2023
                March 2023
                : 373
                : 110370
                Article
                10.1016/j.cbi.2023.110370
                36731594
                4d770e6d-889e-436d-a891-453d0d9620fd
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article