Blog
About

592
views
0
recommends
+1 Recommend
0 collections
    20
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A comparison of normalization methods for high density oligonucleotide array data based on variance and bias

      , , ,

      Bioinformatics

      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When running experiments that involve multiple high density oligonucleotide arrays, it is important to remove sources of variation between arrays of non-biological origin. Normalization is a process for reducing this variation. It is common to see non-linear relations between arrays and the standard normalization provided by Affymetrix does not perform well in these situations. We present three methods of performing normalization at the probe intensity level. These methods are called complete data methods because they make use of data from all arrays in an experiment to form the normalizing relation. These algorithms are compared to two methods that make use of a baseline array: a one number scaling based algorithm and a method that uses a non-linear normalizing relation by comparing the variability and bias of an expression measure. Two publicly available datasets are used to carry out the comparisons. The simplest and quickest complete data method is found to perform favorably. Software implementing all three of the complete data normalization methods is available as part of the R package Affy, which is a part of the Bioconductor project http://www.bioconductor.org. Additional figures may be found at http://www.stat.berkeley.edu/~bolstad/normalize/index.html

          Related collections

          Author and article information

          Journal
          Bioinformatics
          Bioinformatics
          Oxford University Press (OUP)
          1367-4803
          1460-2059
          January 22 2003
          January 22 2003
          : 19
          : 2
          : 185-193
          Article
          10.1093/bioinformatics/19.2.185
          12538238
          © 2003

          Comments

          Comment on this article