10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fractional flow reserve: a clinical perspective

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fractional flow reserve (FFR) is a reference invasive diagnostic test to assess the physiological significance of an epicardial coronary artery stenosis. FFR-guided percutaneous coronary intervention in stable coronary artery disease has been assessed in three seminal clinical trials and the indications for FFR assessment are expanding into other clinical scenarios. In this article we review the theoretical, experimental and clinical basis for FFR measurement. We place FFR measurement in the context of the comprehensive invasive assessment of coronary physiology in patients presenting with known or suspected angina pectoris in daily clinical practice, and review the recent developments in FFR assessment.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses.

          The clinical significance of coronary-artery stenoses of moderate severity can be difficult to determine. Myocardial fractional flow reserve (FFR) is a new index of the functional severity of coronary stenoses that is calculated from pressure measurements made during coronary arteriography. We compared this index with the results of noninvasive tests commonly used to detect myocardial ischemia, to determine the usefulness of the index. In 45 consecutive patients with moderate coronary stenosis and chest pain of uncertain origin, we performed bicycle exercise testing, thallium scintigraphy, stress echocardiography with dobutamine, and quantitative coronary arteriography and compared the results with measurements of FFR. In all 21 patients with an FFR of less than 0.75, reversible myocardial ischemia was demonstrated unequivocally on at least one noninvasive test. After coronary angioplasty or bypass surgery was performed, all the positive test results reverted to normal. In contrast, 21 of the 24 patients with an FFR of 0.75 or higher tested negative for reversible myocardial ischemia on all the noninvasive tests. No revascularization procedures were performed in these patients, and none were required during 14 months of follow-up. The sensitivity of FFR in the identification of reversible ischemia was 88 percent, the specificity 100 percent, the positive predictive value 100 percent, the negative predictive value 88 percent, and the accuracy 93 percent. In patients with coronary stenosis of moderate severity, FFR appears to be a useful index of the functional severity of the stenoses and the need for coronary revascularization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study.

            The purpose of this study was to investigate the 2-year outcome of percutaneous coronary intervention (PCI) guided by fractional flow reserve (FFR) in patients with multivessel coronary artery disease (CAD). In patients with multivessel CAD undergoing PCI, coronary angiography is the standard method for guiding stent placement. The FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study showed that routine FFR in addition to angiography improves outcomes of PCI at 1 year. It is unknown if these favorable results are maintained at 2 years of follow-up. At 20 U.S. and European medical centers, 1,005 patients with multivessel CAD were randomly assigned to PCI with drug-eluting stents guided by angiography alone or guided by FFR measurements. Before randomization, lesions requiring PCI were identified based on their angiographic appearance. Patients randomized to angiography-guided PCI underwent stenting of all indicated lesions, whereas those randomized to FFR-guided PCI underwent stenting of indicated lesions only if the FFR was 0.80, the rate of myocardial infarction was 0.2% and the rate of revascularization was 3.2 % after 2 years. Routine measurement of FFR in patients with multivessel CAD undergoing PCI with drug-eluting stents significantly reduces mortality and myocardial infarction at 2 years when compared with standard angiography-guided PCI. (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation [FAME]; NCT00267774). Copyright (c) 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diagnostic Accuracy of Fast Computational Approaches to Derive Fractional Flow Reserve From Diagnostic Coronary Angiography: The International Multicenter FAVOR Pilot Study.

              The aim of this prospective multicenter study was to identify the optimal approach for simple and fast fractional flow reserve (FFR) computation from radiographic coronary angiography, called quantitative flow ratio (QFR).
                Bookmark

                Author and article information

                Contributors
                +44 (0) 141 330 1671 , +44 (0) 141 951 5180 , colin.berry@glasgow.ac.uk
                Journal
                Int J Cardiovasc Imaging
                Int J Cardiovasc Imaging
                The International Journal of Cardiovascular Imaging
                Springer Netherlands (Dordrecht )
                1569-5794
                1875-8312
                2 June 2017
                2 June 2017
                2017
                : 33
                : 7
                : 961-974
                Affiliations
                [1 ]ISNI 0000 0004 0590 2070, GRID grid.413157.5, West of Scotland Heart and Lung Centre, , Golden Jubilee National Hospital, ; Clydebank, UK
                [2 ]ISNI 0000 0001 2193 314X, GRID grid.8756.c, BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, , University of Glasgow, ; 126 University Place, Glasgow, G12 8TA UK
                Author information
                http://orcid.org/0000-0001-5047-0885
                Article
                1159
                10.1007/s10554-017-1159-2
                5489582
                28577046
                4e0983d6-bd66-4e59-a1e1-b0517d313a6e
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 16 September 2016
                : 2 January 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000274, British Heart Foundation;
                Award ID: FS/14/15/30661
                Award ID: PG/14/97/31263
                Award Recipient :
                Categories
                Original Paper
                Custom metadata
                © Springer Science+Business Media B.V. 2017

                Cardiovascular Medicine
                fractional flow reserve,coronary physiology,stable angina,myocardial infarction,optimal medical therapy,coronary revascularisation

                Comments

                Comment on this article