2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proanthocyanidins Protect Against Cadmium-Induced Diabetic Nephropathy Through p38 MAPK and Keap1/Nrf2 Signaling Pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic nephropathy (DN) is one of the most devastating complications of diabetes mellitus. Although cadmium (Cd) exposure might be involved in the pathogenesis of DN, the underlying mechanism is still unclear. In this study, we explored the protective effects and possible mechanism of proanthocyanidins (OPC) from grape seed using a mouse model of Cd-induced DN. The successful establishment of this model was verified by analyzing the physiological and biochemical indices of mice, including their body weight and tissue ratio; levels of blood glucose, creatinine, microalbumin, total cholesterol, triglycerides, high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol; and was based on histopathological examination. Oxidative-antioxidative status, elemental analysis, and key signaling pathway analysis were performed to explore the possible protective mechanism of OPC. The protective effects of OPC and its possible mechanism in preventing the progression of DN were investigated using a multidimensional approach, including its ability in regulating oxidative-antioxidative status (lipid peroxidation, protein carbonyl, superoxide dismutase, and glutathione GST, GSH-Px), metal-binding ability (Cd levels in the kidneys and urine and MT content) and mediation of essential elements (Zn, Ca, Cu, and Fe levels in the kidneys), and activation of the p38 MAPK and Keap1/Nrf2 signaling pathways. OPC exhibited a significant renoprotective effect, attributed to the metal-chelating ability, anti-oxidative effect, and mediation of oxidative stress-related signaling pathway. These results highlight the potential of OPC in preventing or treating DN in humans and suggest the dietary intake of grapes, which are rich in polyphenols, for the prevention of type 2 diabetes mellitus and its complications.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019

          This review is an updated and expanded version of the five prior reviews that were published in this journal in 1997, 2003, 2007, 2012, and 2016. For all approved therapeutic agents, the time frame has been extended to cover the almost 39 years from the first of January 1981 to the 30th of September 2019 for all diseases worldwide and from ∼1946 (earliest so far identified) to the 30th of September 2019 for all approved antitumor drugs worldwide. As in earlier reviews, only the first approval of any drug is counted, irrespective of how many "biosimilars" or added approvals were subsequently identified. As in the 2012 and 2016 reviews, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions, and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or synthetic variations using their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from 1946 to 1980, of the 75 small molecules, 40, or 53.3%, are N or ND. In the 1981 to date time frame the equivalent figures for the N* compounds of the 185 small molecules are 62, or 33.5%, though to these can be added the 58 S* and S*/NMs, bringing the figure to 64.9%. In other areas, the influence of natural product structures is quite marked with, as expected from prior information, the anti-infective area being dependent on natural products and their structures, though as can be seen in the review there are still disease areas (shown in Table 2) for which there are no drugs derived from natural products. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are still able to identify only two de novo combinatorial compounds (one of which is a little speculative) approved as drugs in this 39-year time frame, though there is also one drug that was developed using the "fragment-binding methodology" and approved in 2012. We have also added a discussion of candidate drug entities currently in clinical trials as "warheads" and some very interesting preliminary reports on sources of novel antibiotics from Nature due to the absolute requirement for new agents to combat plasmid-borne resistance genes now in the general populace. We continue to draw the attention of readers to the recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated"; thus we consider that this area of natural product research should be expanded significantly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic Kidney Disease.

            The definition and classification of chronic kidney disease (CKD) have evolved over time, but current international guidelines define this condition as decreased kidney function shown by glomerular filtration rate (GFR) of less than 60 mL/min per 1·73 m(2), or markers of kidney damage, or both, of at least 3 months duration, regardless of the underlying cause. Diabetes and hypertension are the main causes of CKD in all high-income and middle-income countries, and also in many low-income countries. Incidence, prevalence, and progression of CKD also vary within countries by ethnicity and social determinants of health, possibly through epigenetic influence. Many people are asymptomatic or have non-specific symptoms such as lethargy, itch, or loss of appetite. Diagnosis is commonly made after chance findings from screening tests (urinary dipstick or blood tests), or when symptoms become severe. The best available indicator of overall kidney function is GFR, which is measured either via exogenous markers (eg, DTPA, iohexol), or estimated using equations. Presence of proteinuria is associated with increased risk of progression of CKD and death. Kidney biopsy samples can show definitive evidence of CKD, through common changes such as glomerular sclerosis, tubular atrophy, and interstitial fibrosis. Complications include anaemia due to reduced production of erythropoietin by the kidney; reduced red blood cell survival and iron deficiency; and mineral bone disease caused by disturbed vitamin D, calcium, and phosphate metabolism. People with CKD are five to ten times more likely to die prematurely than they are to progress to end stage kidney disease. This increased risk of death rises exponentially as kidney function worsens and is largely attributable to death from cardiovascular disease, although cancer incidence and mortality are also increased. Health-related quality of life is substantially lower for people with CKD than for the general population, and falls as GFR declines. Interventions targeting specific symptoms, or aimed at supporting educational or lifestyle considerations, make a positive difference to people living with CKD. Inequity in access to services for this disease disproportionally affects disadvantaged populations, and health service provision to incentivise early intervention over provision of care only for advanced CKD is still evolving in many countries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of diabetic kidney disease.

              Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide and the single strongest predictor of mortality in patients with diabetes. DKD is a prototypical disease of gene and environmental interactions. Tight glucose control significantly decreases DKD incidence, indicating that hyperglycemia-induced metabolic alterations, including changes in energy utilization and mitochondrial dysfunction, play critical roles in disease initiation. Blood pressure control, especially with medications that inhibit the angiotensin system, is the only effective way to slow disease progression. While DKD is considered a microvascular complication of diabetes, growing evidence indicates that podocyte loss and epithelial dysfunction play important roles. Inflammation, cell hypertrophy, and dedifferentiation by the activation of classic pathways of regeneration further contribute to disease progression. Concerted clinical and basic research efforts will be needed to understand DKD pathogenesis and to identify novel drug targets.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                03 January 2022
                2021
                : 12
                : 801048
                Affiliations
                [1] 1 College of Food and Biotechnology, Shaanxi University of Science and Technology , Xi’an, China
                [2] 2 School of Chemistry and Chemical Engineering, Xi’an University of Science and Technology , Xi’an, China
                Author notes

                Edited by: Zhiyong Guo, Second Military Medical University, China

                Reviewed by: Milton Prabu, Annamalai University, India

                Xiaoyong Yu, Shaanxi Provincial Hospital of Traditional Chinese Medicine, China

                *Correspondence: Fuxin Chen, chenfuxin1981@ 123456163.com

                This article was submitted to Renal Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                801048
                10.3389/fphar.2021.801048
                8762225
                35046823
                4e1872d1-035b-4b3a-80c0-0bd38652b1a1
                Copyright © 2022 Gong, Wang, Pi, Guo, Pei, Yang, Chang, Wang and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 October 2021
                : 03 December 2021
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                cadmium,diabetic nephropathy,proanthocyanidins,keap1/nrf2 signaling pathway,p38 mapk signaling pathway

                Comments

                Comment on this article