21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action.

          Methods

          Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance.

          Results

          Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro.

          Conclusions

          Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke.

          Cerebral edema contributes significantly to morbidity and death associated with many common neurological disorders. However, current treatment options are limited to hyperosmolar agents and surgical decompression, therapies introduced more than 70 years ago. Here we show that mice deficient in aquaporin-4 (AQP4), a glial membrane water channel, have much better survival than wild-type mice in a model of brain edema caused by acute water intoxication. Brain tissue water content and swelling of pericapillary astrocytic foot processes in AQP4-deficient mice were significantly reduced. In another model of brain edema, focal ischemic stroke produced by middle cerebral artery occlusion, AQP4-deficient mice had improved neurological outcome. Cerebral edema, as measured by percentage of hemispheric enlargement at 24 h, was decreased by 35% in AQP4-deficient mice. These results implicate a key role for AQP4 in modulating brain water transport, and suggest that AQP4 inhibition may provide a new therapeutic option for reducing brain edema in a wide variety of cerebral disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials.

            Randomized trials have suggested that hypertonic saline solutions may be superior to mannitol for the treatment of elevated intracranial pressure, but their impact on clinical practice has been limited, partly by their small size. We therefore combined their findings in a meta-analysis. We searched for relevant studies in MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, and ISI Web of Knowledge. Randomized trials were included if they directly compared equiosmolar doses of hypertonic sodium solutions to mannitol for the treatment of elevated intracranial pressure in human subjects undergoing quantitative intracranial pressure measurement. Two investigators independently reviewed potentially eligible trials and extracted data using a preformed data collection sheet. Disagreements were resolved by consensus or by a third investigator if needed. We collected data on patient demographics, type of intracranial pathology, baseline intracranial pressure, osms per treatment dose, quantitative change in intracranial pressure, and prespecified adverse events. Our primary outcome was the proportion of successfully treated episodes of elevated intracranial pressure. Five trials comprising 112 patients with 184 episodes of elevated intracranial pressure met our inclusion criteria. In random-effects models, the relative risk of intracranial pressure control was 1.16 (95% confidence interval, 1.00-1.33), and the difference in mean intracranial pressure reduction was 2.0 mm Hg (95% confidence interval, -1.6 to 5.7), with both favoring hypertonic saline over mannitol. A mild degree of heterogeneity was present among the included trials. There were no significant adverse events reported. We found that hypertonic saline is more effective than mannitol for the treatment of elevated intracranial pressure. Our meta-analysis is limited by the small number and size of eligible trials, but our findings suggest that hypertonic saline may be superior to the current standard of care and argue for a large, multicenter, randomized trial to definitively establish the first-line medical therapy for intracranial hypertension.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1.

              In this study, we demonstrate that mice deficient in TNFR1 (TNFR1(-/-)) were resistant to LPS-induced encephalopathy. Systemic administration of lipopolysaccharide (LPS) induces a widespread inflammatory response similar to that observed in sepsis. Following LPS administration TNFR1(-/-) mice had less caspase-dependent apoptosis in brain cells and fewer neutrophils infiltrating the brain (p<0.039), compared to control C57Bl6 (TNFR1(+/+)) mice. TNFR1-dependent increase in aquaporin (AQP)-4 mRNA and protein expression was observed with a concomitant increase in water content, in brain (18% increase in C57Bl6 mice treated with LPS versus those treated with saline), similar to cerebral edema observed in sepsis. Furthermore, absence of TNFR1 partially but significantly reduced the activation of astrocytes, as shown by immunofluorescence and markedly inhibited iNOS mRNA expression (p<0.01). Septic encephalopathy is a devastating complication of sepsis. Although, considerable work has been done to identify the mechanism causing the pathological alterations in this setting, the culprit still remains an enigma. Our results demonstrate for the first time that endotoxemia leads to inflammation in brain, with alteration in blood-brain barrier, up-regulation of AQP4 and associated edema, neutrophil infiltration, astrocytosis, as well as apoptotic cellular death, all of which appear to be mediated by TNF-alpha signaling through TNFR1.
                Bookmark

                Author and article information

                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2012
                4 October 2012
                : 16
                : 5
                : R186
                Affiliations
                [1 ]Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road, Changsha, Hunan, China 410008
                [2 ]Department of Physiology, Xiangya Medical School, Central South University, Xiangya Road, Changsha, Hunan, China 410013
                [3 ]Department of Pharmacology, Emory University, 1518 Clifton Road Northeast, Atlanta, GA, USA GA 30322
                Article
                cc11670
                10.1186/cc11670
                3682288
                23036239
                4e19f2b6-d015-4be6-846c-976daa61085a
                Copyright ©2012 Cao et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 March 2012
                : 13 June 2012
                : 4 October 2012
                Categories
                Research

                Emergency medicine & Trauma
                aquaporin 4,lipopolysaccharide,protein kinase c,brain edema,interleukin-1 beta,hypertonic saline

                Comments

                Comment on this article