9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The histone deacetylase inhibitor panobinostat is a potent antitumor agent in canine diffuse large B-cell lymphoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-Hodgkin lymphoma (NHL) is one of the most common causes of cancer-related death in the United States and Europe. Although the outcome of NHL patients has improved over the last years with current therapies, the rate of mortality is still high. A plethora of new drugs is entering clinical development for NHL treatment; however, the approval of new treatments remains low due in part to the paucity of clinically relevant models for validation. Canine lymphoma shares remarkable similarities with its human counterpart, making the dog an excellent animal model to explore novel therapeutic molecules and approaches.

          Histone deacetylase inhibitors (HDACis) have emerged as a powerful new class of anti-cancer drugs for human therapy. To investigate HDACi antitumor properties on canine diffuse large B-cell lymphoma, a panel of seven HDACi compounds (CI-994, panobinostat, SBHA, SAHA, scriptaid, trichostatin A and tubacin) was screened on CLBL-1 canine B-cell lymphoma cell line. Our results demonstrated that all HDACis tested exhibited dose-dependent inhibitory effects on proliferation of CLBL-1 cells, while promoting increased H3 histone acetylation. Amongst all HDACis studied, panobinostat proved to be the most promising compound and was selected for further in vitro and in vivo evaluation. Panobinostat cytotoxicity was linked to H3 histone and α-tubulin acetylation, and to apoptosis induction. Importantly, panobinostat efficiently inhibited CLBL-1 xenograft tumor growth, and strongly induced acetylation of H3 histone and apoptosis in vivo. In conclusion, these results provide new data validating HDACis and, especially, panobinostat as a novel anti-cancer therapy for veterinary applications, while contributing to comparative oncology.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy.

          Apoptosis or programmed cell death is a key regulator of physiological growth control and regulation of tissue homeostasis. One of the most important advances in cancer research in recent years is the recognition that cell death mostly by apoptosis is crucially involved in the regulation of tumor formation and also critically determines treatment response. Killing of tumor cells by most anticancer strategies currently used in clinical oncology, for example, chemotherapy, gamma-irradiation, suicide gene therapy or immunotherapy, has been linked to activation of apoptosis signal transduction pathways in cancer cells such as the intrinsic and/or extrinsic pathway. Thus, failure to undergo apoptosis may result in treatment resistance. Understanding the molecular events that regulate apoptosis in response to anticancer chemotherapy, and how cancer cells evade apoptotic death, provides novel opportunities for a more rational approach to develop molecular-targeted therapies for combating cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Non-Hodgkin lymphoma.

            Lymphomas are solid tumours of the immune system. Hodgkin's lymphoma accounts for about 10% of all lymphomas, and the remaining 90% are referred to as non-Hodgkin lymphoma. Non-Hodgkin lymphomas have a wide range of histological appearances and clinical features at presentation, which can make diagnosis difficult. Lymphomas are not rare, and most physicians, irrespective of their specialty, will probably have come across a patient with lymphoma. Timely diagnosis is important because effective, and often curative, therapies are available for many subtypes. In this Seminar we discuss advances in the understanding of the biology of these malignancies and new, available treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dog models of naturally occurring cancer.

              Studies using dogs provide an ideal solution to the gap in animal models for natural disease and translational medicine. This is evidenced by approximately 400 inherited disorders being characterized in domesticated dogs, most of which are relevant to humans. There are several hundred isolated populations of dogs (breeds) and each has a vastly reduced genetic variation compared with humans; this simplifies disease mapping and pharmacogenomics. Dogs age five- to eight-fold faster than do humans, share environments with their owners, are usually kept until old age and receive a high level of health care. Farseeing investigators recognized this potential and, over the past decade, have developed the necessary tools and infrastructure to utilize this powerful model of human disease, including the sequencing of the dog genome in 2005. Here, we review the nascent convergence of genetic and translational canine models of spontaneous disease, focusing on cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                19 June 2018
                19 June 2018
                : 9
                : 47
                : 28586-28598
                Affiliations
                1 Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
                2 Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
                3 Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional, Bobadela LRS, Portugal
                4 Department of Pathobiology, Clinical Pathology Unit, University of Veterinary Medicine, Vienna, Austria
                5 Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
                Author notes
                Correspondence to: Frederico Aires-da-Silva, fasilva@ 123456fmv.ulisboa.pt
                Article
                25580
                10.18632/oncotarget.25580
                6033347
                29417954
                4e4bceb4-1101-40f4-96e2-83a8467448e8
                Copyright: © 2018 Dias et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 January 2018
                : 19 May 2018
                Categories
                Research Paper

                Oncology & Radiotherapy
                hdac inhibitors,panobinostat,lbh589,non-hodgkin lymphoma,canine lymphoma
                Oncology & Radiotherapy
                hdac inhibitors, panobinostat, lbh589, non-hodgkin lymphoma, canine lymphoma

                Comments

                Comment on this article