Blog
About

44
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Common Dataset for Genomic Analysis of Livestock Populations

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although common datasets are an important resource for the scientific community and can be used to address important questions, genomic datasets of a meaningful size have not generally been available in livestock species. We describe a pig dataset that PIC (a Genus company) has made available for comparing genomic prediction methods. We also describe genomic evaluation of the data using methods that PIC considers best practice for predicting and validating genomic breeding values, and we discuss the impact of data structure on accuracy. The dataset contains 3534 individuals with high-density genotypes, phenotypes, and estimated breeding values for five traits. Genomic breeding values were calculated using BayesB, with phenotypes and de-regressed breeding values, and using a single-step genomic BLUP approach that combines information from genotyped and un-genotyped animals. The genomic breeding value accuracy increased with increased trait heritability and with increased relationship between training and validation. In nearly all cases, BayesB using de-regressed breeding values outperformed the other approaches, but the single-step evaluation performed only slightly worse. This dataset was useful for comparing methods for genomic prediction using real data. Our results indicate that validation approaches accounting for relatedness between populations can correct for potential overestimation of genomic breeding value accuracies, with implications for genotyping strategies to carry out genomic selection programs.

          Related collections

          Most cited references 7

          • Record: found
          • Abstract: found
          • Article: not found

          Mapping genes for complex traits in domestic animals and their use in breeding programmes.

          Genome-wide panels of SNPs have recently been used in domestic animal species to map and identify genes for many traits and to select genetically desirable livestock. This has led to the discovery of the causal genes and mutations for several single-gene traits but not for complex traits. However, the genetic merit of animals can still be estimated by genomic selection, which uses genome-wide SNP panels as markers and statistical methods that capture the effects of large numbers of SNPs simultaneously. This approach is expected to double the rate of genetic improvement per year in many livestock systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology

            Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information

              Background The incorporation of genomic coefficients into the numerator relationship matrix allows estimation of breeding values using all phenotypic, pedigree and genomic information simultaneously. In such a single-step procedure, genomic and pedigree-based relationships have to be compatible. As there are many options to create genomic relationships, there is a question of which is optimal and what the effects of deviations from optimality are. Methods Data of litter size (total number born per litter) for 338,346 sows were analyzed. Illumina PorcineSNP60 BeadChip genotypes were available for 1,989. Analyses were carried out with the complete data set and with a subset of genotyped animals and three generations pedigree (5,090 animals). A single-trait animal model was used to estimate variance components and breeding values. Genomic relationship matrices were constructed using allele frequencies equal to 0.5 (G05), equal to the average minor allele frequency (GMF), or equal to observed frequencies (GOF). A genomic matrix considering random ascertainment of allele frequencies was also used (GOF*). A normalized matrix (GN) was obtained to have average diagonal coefficients equal to 1. The genomic matrices were combined with the numerator relationship matrix creating H matrices. Results In G05 and GMF, both diagonal and off-diagonal elements were on average greater than the pedigree-based coefficients. In GOF and GOF*, the average diagonal elements were smaller than pedigree-based coefficients. The mean of off-diagonal coefficients was zero in GOF and GOF*. Choices of G with average diagonal coefficients different from 1 led to greater estimates of additive variance in the smaller data set. The correlation between EBV and genomic EBV (n = 1,989) were: 0.79 using G05, 0.79 using GMF, 0.78 using GOF, 0.79 using GOF*, and 0.78 using GN. Accuracies calculated by inversion increased with all genomic matrices. The accuracies of genomic-assisted EBV were inflated in all cases except when GN was used. Conclusions Parameter estimates may be biased if the genomic relationship coefficients are in a different scale than pedigree-based coefficients. A reasonable scaling may be obtained by using observed allele frequencies and re-scaling the genomic relationship matrix to obtain average diagonal elements of 1.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                ggg
                ggg
                ggg
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                1 April 2012
                April 2012
                : 2
                : 4
                : 429-435
                Affiliations
                [* ]Genus plc, Hendersonville, Tennessee 37075
                []School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia
                Author notes

                Supporting information is available online at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.001453/-/DC1

                [1 ]Corresponding author: Genus plc, 100 Bluegrass Commons Blvd., Suite 2200, Hendersonville, TN 37075. E-mail: matthew.cleveland@ 123456genusplc.com
                Article
                GGG_001453
                10.1534/g3.111.001453
                3337471
                22540034
                Copyright © 2012 Cleveland et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Product
                Categories
                Investigations

                Genetics

                genpred, genomic relationships, shared data resources, pig, cross-validation

                Comments

                Comment on this article