11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene mutations that promote adrenal aldosterone production, sodium retention, and hypertension

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Primary aldosteronism (PA) is the most common form of secondary hypertension, found in about 5% of all hypertension cases, and up to 20% of resistant hypertension cases. The most common forms of PA are an aldosterone-producing adenoma and idiopathic (bilateral) hyperaldosteronism. Rare genetic forms of PA exist and, until recently, the only condition with a known genetic mechanism was familial hyperaldosteronism type 1, also known as glucocorticoid-remediable aldosteronism (FHA1/GRA). FHA type 3 has now been shown to derive from germline mutations in the KCNJ5 gene, which encodes a potassium channel found on the adrenal cells. Remarkably, somatic mutations in KCNJ5 are found in about one-third of aldosterone-producing adenomas, and these mutations are likely to be involved in their pathogenesis. Finally, mutations in the genes encoding an L-type calcium channel ( CACNA1D) and in genes encoding a sodium–potassium adenosine triphosphatase ( ATP1A1) or a calcium adenosine triphosphatase ( ATP2B3) are found in other aldosterone-producing adenomas. These findings provide a working model, in which adenoma formation and/or aldosterone production in many cases derives from increased calcium entry, which drives the pathogenesis of primary aldosteronism.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Human hypertension caused by mutations in WNK kinases.

          Hypertension is a major public health problem of largely unknown cause. Here, we identify two genes causing pseudohypoaldosteronism type II, a Mendelian trait featuring hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Both genes encode members of the WNK family of serine-threonine kinases. Disease-causing mutations in WNK1 are large intronic deletions that increase WNK1 expression. The mutations in WNK4 are missense, which cluster in a short, highly conserved segment of the encoded protein. Both proteins localize to the distal nephron, a kidney segment involved in salt, K+, and pH homeostasis. WNK1 is cytoplasmic, whereas WNK4 localizes to tight junctions. The WNK kinases and their associated signaling pathway(s) may offer new targets for the development of antihypertensive drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline.

            Our objective was to develop clinical practice guidelines for the diagnosis and treatment of patients with primary aldosteronism. The Task Force comprised a chair, selected by the Clinical Guidelines Subcommittee (CGS) of The Endocrine Society, six additional experts, one methodologist, and a medical writer. The Task Force received no corporate funding or remuneration. Systematic reviews of available evidence were used to formulate the key treatment and prevention recommendations. We used the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) group criteria to describe both the quality of evidence and the strength of recommendations. We used "recommend" for strong recommendations and "suggest" for weak recommendations. Consensus was guided by systematic reviews of evidence and discussions during one group meeting, several conference calls, and multiple e-mail communications. The drafts prepared by the task force with the help of a medical writer were reviewed successively by The Endocrine Society's CGS, Clinical Affairs Core Committee (CACC), and Council. The version approved by the CGS and CACC was placed on The Endocrine Society's Web site for comments by members. At each stage of review, the Task Force received written comments and incorporated needed changes. We recommend case detection of primary aldosteronism be sought in higher risk groups of hypertensive patients and those with hypokalemia by determining the aldosterone-renin ratio under standard conditions and that the condition be confirmed/excluded by one of four commonly used confirmatory tests. We recommend that all patients with primary aldosteronism undergo adrenal computed tomography as the initial study in subtype testing and to exclude adrenocortical carcinoma. We recommend the presence of a unilateral form of primary aldosteronism should be established/excluded by bilateral adrenal venous sampling by an experienced radiologist and, where present, optimally treated by laparoscopic adrenalectomy. We recommend that patients with bilateral adrenal hyperplasia, or those unsuitable for surgery, optimally be treated medically by mineralocorticoid receptor antagonists.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Molecular mechanisms of human hypertension.

                Bookmark

                Author and article information

                Journal
                Appl Clin Genet
                Appl Clin Genet
                The Application of Clinical Genetics
                The Application of Clinical Genetics
                Dove Medical Press
                1178-704X
                2014
                24 December 2013
                : 7
                : 1-13
                Affiliations
                [1 ]Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, Ann Arbor, MI, USA
                [2 ]Department of Physiology, University of Michigan, Ann Arbor, MI, USA
                Author notes
                Correspondence: Richard J Auchus, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Room 5560A, MSRBII, 1150W Medical Center Drive, Ann Arbor, MI 48109, USA, Email rauchus@ 123456med.umich.edu
                Article
                tacg-7-001
                10.2147/TACG.S35571
                3882136
                4f58211a-4800-4659-916c-4ba2066519ea
                © 2014 Moraitis et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                hereditary,potassium channel,calcium channel,hyperaldosteronism

                Comments

                Comment on this article