4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      One-Year Outcome of Multiple Blood–Brain Barrier Disruptions With Temozolomide for the Treatment of Glioblastoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction: To overcome the blood–brain barrier (BBB) which interferes with the effect of chemotherapeutic agents, we performed multiple disruptions of BBB (BBBD) with magnetic resonance-guided focused ultrasound on patients with glioblastoma (GBM) during standard adjuvant temozolomide (TMZ) chemotherapy [clinical trial registration no.NCT03712293 ( clinicaltrials.gov)]. We report a 1-year follow-up result of BBBD with TMZ for GBM.

          Methods: From September 2018 to January 2019, six patients were enrolled (four men and two women, median age: 53 years, range: 50–67 years). Of the six patients, five underwent a total of six cycles of BBBD during standard TMZ adjuvant therapy. One patient underwent three cycles of BBBD but continued with TMZ chemotherapy. The 1-year follow-up results of these six patients were reviewed.

          Results: The mean follow-up duration was 15.17 ± 1.72 months. Two patients showed a recurrence of tumor at 11 and 16 months, respectively. One underwent surgery, and the other patient was restarted with TMZ chemotherapy due to the tumor location with a highly possibility of surgical complications. The survival rate up to 1 year was 100%, and the other four patients are on observation without recurrence. None of the six patients had immediate or delayed BBBD-related complications.

          Conclusion: Multiple BBBDs can be regarded as a safe procedure without long-term complications, and it seems to have some survival benefits. However, since TMZ partially crosses the BBB, a further extended study with large numbers would be needed to evaluate the benefits of BBBD resulting in an increase of TMZ concentration. This study opened a new therapeutic strategy for GBM by combining BBBD with a larger molecular agent.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: found

          Genetic pathways to glioblastoma: a population-based study.

          We conducted a population-based study on glioblastomas in the Canton of Zurich, Switzerland (population, 1.16 million) to determine the frequency of major genetic alterations and their effect on patient survival. Between 1980 and 1994, 715 glioblastomas were diagnosed. The incidence rate per 100,000 population/year, adjusted to the World Standard Population, was 3.32 in males and 2.24 in females. Observed survival rates were 42.4% at 6 months, 17.7% at 1 year, and 3.3% at 2 years. For all of the age groups, younger patients survived significantly longer, ranging from a median of 8.8 months ( 80 years). Loss of heterozygosity (LOH) 10q was the most frequent genetic alteration (69%), followed by EGFR amplification (34%), TP53 mutations (31%), p16(INK4a) deletion (31%), and PTEN mutations (24%). LOH 10q occurred in association with any of the other genetic alterations and was predictive of shorter survival. Primary (de novo) glioblastomas prevailed (95%), whereas secondary glioblastomas that progressed from low-grade or anaplastic gliomas were rare (5%). Secondary glioblastomas were characterized by frequent LOH 10q (63%) and TP53 mutations (65%). Of the TP53 mutations in secondary glioblastomas, 57% were in hotspot codons 248 and 273, whereas in primary glioblastomas, mutations were more equally distributed. G:C-->A:T mutations at CpG sites were more frequent in secondary than primary glioblastomas (56% versus 30%; P = 0.0208). This suggests that the acquisition of TP53 mutations in these glioblastoma subtypes occurs through different mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors.

            We have recently shown that low intensity, intermediate frequency, electric fields inhibit by an anti-microtubule mechanism of action, cancerous cell growth in vitro. Using implanted electrodes, these fields were also shown to inhibit the growth of dermal tumors in mice. The present study extends these findings to additional cell lines [human breast carcinoma; MDA-MB-231, and human non-small-cell lung carcinoma (H1299)] and to animal tumor models (intradermal B16F1 melanoma and intracranial F-98 glioma) using external insulated electrodes. These findings led to the initiation of a pilot clinical trial of the effects of TTFields in 10 patients with recurrent glioblastoma (GBM). Median time to disease progression in these patients was 26.1 weeks and median overall survival was 62.2 weeks. These time to disease progression and OS values are more than double the reported medians of historical control patients. No device-related serious adverse events were seen after >70 months of cumulative treatment in all of the patients. The only device-related side effect seen was a mild to moderate contact dermatitis beneath the field delivering electrodes. We conclude that TTFields are a safe and effective new treatment modality which effectively slows down tumor growth in vitro, in vivo and, as demonstrated here, in human cancer patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients.

              Standard therapy for glioblastoma (GBM) is temozolomide (TMZ) administration, initially concurrent with radiotherapy (RT), and subsequently as maintenance therapy. The radiologic images obtained in this setting can be difficult to interpret since they may show radiation-induced pseudoprogression (psPD) rather than disease progression. Patients with histologically confirmed GBM underwent radiotherapy plus continuous daily temozolomide (75 mg/m(2)/d), followed by 12 maintenance temozolomide cycles (150 to 200 mg/m(2) for 5 days every 28 days) if magnetic resonance imaging (MRI) showed no enhancement suggesting a tumor; otherwise, chemotherapy was delivered until complete response or unequivocal progression. The first MRI scan was performed 1 month after completing combined chemoradiotherapy. In 103 patients (mean age, 52 years [range 20 to 73 years]), total resection, subtotal resection, and biopsy were obtained in 51, 51, and 1 cases, respectively. MGMT promoter was methylated in 36 patients (35%) and unmethylated in 67 patients (65%). Lesion enlargement, evidenced at the first MRI scan in 50 of 103 patients, was subsequently classified as psPD in 32 patients and early disease progression in 18 patients. PsPD was recorded in 21 (91%) of 23 methylated MGMT promoter and 11 (41%) of 27 unmethylated MGMT promoter (P = .0002) patients. MGMT status (P = .001) and psPD detection (P = .045) significantly influenced survival. PsPD has a clinical impact on chemotherapy-treated GBM, as it may express the glioma killing effects of treatment and is significantly correlated with MGMT status. Improvement in the early recognition of psPD patterns and knowledge of mechanisms underlying this phenomenon are crucial to eliminating biases in evaluating the results of clinical trials and guaranteeing effective treatment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                10 September 2020
                2020
                : 10
                : 1663
                Affiliations
                [1] 1Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine , Seoul, South Korea
                [2] 2Department of Radiology, Yonsei University College of Medicine , Seoul, South Korea
                [3] 3InSightec, Ltd. , Haifa, Israel
                Author notes

                Edited by: Maria Caffo, University of Messina, Italy

                Reviewed by: Antonio Silvani, Carlo Besta Neurological Institute (IRCCS), Italy; Christian Badr, Massachusetts General Hospital and Harvard Medical School, United States

                *Correspondence: Jin Woo Chang jchang@ 123456yuhs.ac

                This article was submitted to Neuro-Oncology and Neurosurgical Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2020.01663
                7511634
                33014832
                4f74c16e-7899-49c7-8df4-2c8692e705f2
                Copyright © 2020 Park, Kim, Jung, Chang, Choi, Rachmilevitch, Zadicario and Chang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 May 2020
                : 28 July 2020
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 31, Pages: 7, Words: 4537
                Categories
                Oncology
                Clinical Trial

                Oncology & Radiotherapy
                glioblastoma multiforme,progression-free survival,blood–brain barrier,focused ultrasound,magnetic resonance images

                Comments

                Comment on this article