Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Emerging pathogens: the epidemiology and evolution of species jumps

      review-article
      a , b , c
      Trends in Ecology & Evolution
      Elsevier Ltd.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Novel pathogens continue to emerge in human, domestic animal, wildlife and plant populations, yet the population dynamics of this kind of biological invasion remain poorly understood. Here, we consider the epidemiological and evolutionary processes underlying the initial introduction and subsequent spread of a pathogen in a new host population, with special reference to pathogens that originate by jumping from one host species to another. We conclude that, although pathogen emergence is inherently unpredictable, emerging pathogens tend to share some common traits, and that directly transmitted RNA viruses might be the pathogens that are most likely to jump between host species.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Modelling disease outbreaks in realistic urban social networks.

          Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free, which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological and biomedical implications of the co-evolution of pathogens and their hosts.

            Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evolution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host-pathogen interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Population biology of multihost pathogens.

              The majority of pathogens, including many of medical and veterinary importance, can infect more than one species of host. Population biology has yet to explain why perceived evolutionary advantages of pathogen specialization are, in practice, outweighed by those of generalization. Factors that predispose pathogens to generalism include high levels of genetic diversity and abundant opportunities for cross-species transmission, and the taxonomic distributions of generalists and specialists appear to reflect these factors. Generalism also has consequences for the evolution of virulence and for pathogen epidemiology, making both much less predictable. The evolutionary advantages and disadvantages of generalism are so finely balanced that even closely related pathogens can have very different host range sizes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Trends Ecol Evol
                Trends Ecol. Evol. (Amst.)
                Trends in Ecology & Evolution
                Elsevier Ltd.
                0169-5347
                1872-8383
                10 March 2005
                May 2005
                10 March 2005
                : 20
                : 5
                : 238-244
                Affiliations
                [a ]Centre for Infectious Diseases, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, UK, EH25 9RG
                [b ]Graham Kerr Building, Division of Environmental and Evolutionary Biology, University of Glasgow, Glasgow, UK, G12 8QQ
                [c ]Department of Biology, Emory University, Atlanta, GA 30322, USA
                Article
                S0169-5347(05)00038-8
                10.1016/j.tree.2005.02.009
                7119200
                16701375
                4f8eae59-f331-4e85-92f8-56596bc863c8
                Copyright © 2005 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Ecology
                Ecology

                Comments

                Comment on this article