1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRPV1 in chronic pruritus and pain: Soft modulation as a therapeutic strategy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic pain and pruritus are highly disabling pathologies that still lack appropriate therapeutic intervention. At cellular level the transduction and transmission of pain and pruritogenic signals are closely intertwined, negatively modulating each other. The molecular and cellular pathways involved are multifactorial and complex, including peripheral and central components. Peripherally, pain and itch are produced by subpopulations of specialized nociceptors that recognize and transduce algesic and pruritogenic signals. Although still under intense investigation, cumulative evidence is pointing to the thermosensory channel TRPV1 as a hub for a large number of pro-algesic and itchy agents. TRPV1 appears metabolically coupled to most neural receptors that recognize algesic and pruritic molecules. Thus, targeting TRPV1 function appears as a valuable and reasonable therapeutic strategy. In support of this tenet, capsaicin, a desensitizing TRPV1 agonist, has been shown to exhibit clinically relevant analgesic, anti-inflammatory, and anti-pruritic activities. However, potent TRPV1 antagonists have been questioned due to an hyperthermic secondary effect that prevented their clinical development. Thus, softer strategies directed to modulate peripheral TRPV1 function appear warranted to alleviate chronic pain and itch. In this regard, soft, deactivatable TRPV1 antagonists for topical or local application appear as an innovative approach for improving the distressing painful and itchy symptoms of patients suffering chronic pain or pruritus. Here, we review the data on these compounds and propose that this strategy could be used to target other peripheral therapeutic targets.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          The capsaicin receptor: a heat-activated ion channel in the pain pathway.

          Capsaicin, the main pungent ingredient in 'hot' chilli peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system. We have used an expression cloning strategy based on calcium influx to isolate a functional cDNA encoding a capsaicin receptor from sensory neurons. This receptor is a non-selective cation channel that is structurally related to members of the TRP family of ion channels. The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of the TRPV1 ion channel determined by electron cryo-microscopy

            Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here, we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane helices S5–S6 and the intervening pore loop, which is flanked by S1–S4 voltage sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including N-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRPV1 structures in distinct conformations reveal mechanisms of activation

              TRP channels are polymodal signal detectors that respond to a wide range of physical and chemical stimuli. Elucidating how these channels integrate and convert physiological signals into channel opening is essential to understanding how they regulate cell excitability under normal and pathophysiological conditions. Here we exploit pharmacological probes (a peptide toxin and small vanilloid agonists) to determine structures of two activated states of the capsaicin receptor, TRPV1. A domain (S1-S4) that moves during activation of voltage-gated channels remains stationary in TRPV1, highlighting differences in gating mechanisms for these structurally related channel superfamilies. TRPV1 opening is associated with major structural rearrangements in the outer pore, including the pore helix and selectivity filter, as well as pronounced dilation of a hydrophobic constriction at the lower gate, suggesting a dual gating mechanism. Allosteric coupling between upper and lower gates may account for rich physiologic modulation exhibited by TRPV1 and other TRP channels.
                Bookmark

                Author and article information

                Contributors
                URI : http://loop.frontiersin.org/people/367063/overview
                URI : http://loop.frontiersin.org/people/317454/overview
                URI : http://loop.frontiersin.org/people/243260/overview
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                02 September 2022
                2022
                : 15
                : 930964
                Affiliations
                Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández , Elche, Spain
                Author notes

                Edited by: David I. Hughes, University of Glasgow, United Kingdom

                Reviewed by: Junichi Hachisuka, University of Glasgow, United Kingdom; Tong Liu, Nantong University, China

                *Correspondence: Asia Fernández-Carvajal, asia.fernandez@ 123456umh.es

                This article was submitted to Pain Mechanisms and Modulators, a section of the journal Frontiers in Molecular Neuroscience

                Article
                10.3389/fnmol.2022.930964
                9478410
                36117910
                4f8ff709-6597-41f8-b006-fc75e7a5dead
                Copyright © 2022 Fernández-Carvajal, Fernández-Ballester and Ferrer-Montiel.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 April 2022
                : 09 August 2022
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 102, Pages: 14, Words: 9482
                Funding
                Funded by: Ministerio de Ciencia, Innovación y Universidades, doi 10.13039/100014440;
                Funded by: Generalitat Valenciana, doi 10.13039/501100003359;
                Categories
                Neuroscience
                Review

                Neurosciences
                chronic pain,pruritus,therapeutic targets,trp channels,soft drugs
                Neurosciences
                chronic pain, pruritus, therapeutic targets, trp channels, soft drugs

                Comments

                Comment on this article