17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of IFN-alpha and nitric oxide in the release of HMGB1 by RAW 264.7 cells stimulated with polyinosinic-polycytidylic acid or lipopolysaccharide.

      The Journal of Immunology Author Choice
      Animals, Cell Line, HMGB1 Protein, metabolism, secretion, Interferon-alpha, JNK Mitogen-Activated Protein Kinases, genetics, Lipopolysaccharides, pharmacology, Macrophages, drug effects, Mice, Nitric Oxide, Poly I-C, RNA Interference

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High mobility group protein 1 (HMGB1) is a nonhistone nuclear protein with a dual function. Inside the cell, HMGB1 binds to DNA and modulates a variety of processes, including transcription. Outside the cell, HMGB1 displays cytokine activity and can promote inflammation, serving as a mediator in models of shock and arthritis. In in vitro studies, proinflammatory molecules such as LPS, lipoteichoic acid, dsRNA, TNF-alpha, and IFN-gamma can induce HMGB1 release from macrophages. To define further the release process, we investigated the role of the downstream mediators, NO and IFN-alpha, in the release of HMGB1 from RAW 264.7 macrophage cells stimulated with LPS or polyinosinic-polycytidylic acid (poly(I:C)). In these experiments, 1400W, an inhibitor of NO production by the inducible NO synthase, reduced HMGB1 release stimulated by LPS, but not poly(I:C), whereas neutralizing IFN-alpha prevented HMGB1 release induced by poly(I:C), but not LPS. The addition of an NO donor and rIFN-alpha to RAW 264.7 cells caused HMGB1 release. Furthermore, inhibition of JNK activation attenuated HMGB1 release induced by either LPS or poly(I:C). Analysis of bone marrow-derived macrophages stimulated by LPS or poly(I:C) showed patterns of HMGB1 release similar to those of RAW 264.7 cells. Together, these experiments indicate that, although both LPS and poly(I:C) induce HMGB1 release from RAW 264.7 cells and murine macrophages, the response is differentially dependent on NO and IFN-alpha.

          Related collections

          Author and article information

          Comments

          Comment on this article