8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serotonin neurons in mating female mice are activated by male ejaculation

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and serotonin neural activity in females is poorly understood. Here, we investigated dorsal raphe serotonin neural activity in females during sexual behavior. We found that serotonin neural activity in mating females peaked specifically upon male ejaculation, and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis erectile enlargement (“penile cupping”) at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit serotonin neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          Ultra-sensitive fluorescent proteins for imaging neuronal activity

          Summary Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultra-sensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies, and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5 - 40 micrometers long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels.

            Mechanical stimuli drive many physiological processes, including touch and pain sensation, hearing, and blood pressure regulation. Mechanically activated (MA) cation channel activities have been recorded in many cells, but the responsible molecules have not been identified. We characterized a rapidly adapting MA current in a mouse neuroblastoma cell line. Expression profiling and RNA interference knockdown of candidate genes identified Piezo1 (Fam38A) to be required for MA currents in these cells. Piezo1 and related Piezo2 (Fam38B) are vertebrate multipass transmembrane proteins with homologs in invertebrates, plants, and protozoa. Overexpression of mouse Piezo1 or Piezo2 induced two kinetically distinct MA currents. Piezos are expressed in several tissues, and knockdown of Piezo2 in dorsal root ganglia neurons specifically reduced rapidly adapting MA currents. We propose that Piezos are components of MA cation channels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing.

              The primary sensory system requires the integrated function of multiple cell types, although its full complexity remains unclear. We used comprehensive transcriptome analysis of 622 single mouse neurons to classify them in an unbiased manner, independent of any a priori knowledge of sensory subtypes. Our results reveal eleven types: three distinct low-threshold mechanoreceptive neurons, two proprioceptive, and six principal types of thermosensitive, itch sensitive, type C low-threshold mechanosensitive and nociceptive neurons with markedly different molecular and operational properties. Confirming previously anticipated major neuronal types, our results also classify and provide markers for new, functionally distinct subtypes. For example, our results suggest that itching during inflammatory skin diseases such as atopic dermatitis is linked to a distinct itch-generating type. We demonstrate single-cell RNA-seq as an effective strategy for dissecting sensory responsive cells into distinct neuronal types. The resulting catalog illustrates the diversity of sensory types and the cellular complexity underlying somatic sensation.
                Bookmark

                Author and article information

                Journal
                bioRxiv
                BIORXIV
                bioRxiv
                Cold Spring Harbor Laboratory
                19 August 2023
                : 2023.05.14.540716
                Affiliations
                [1 ]Department of Biological and Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA
                [2 ]Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
                [3 ]Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
                [4 ]Lead Contact
                Author notes

                AUTHOR CONTRIBUTIONS

                Conceptualization, E.L.T. and M.R.W.; Methodology, E.L.T. and M.R.W.; Software, C.S., A.G., and E.L.T.; Investigation, E.L.T. and M.R.W.; Analysis, E.L.T., C.S., A.G., and M.R.W.; Writing – Original Draft, E.L.T. and M.R.W.; Writing – Review and Editing, E.L.T., C.S., A.G., and M.R.W.; Supervision, M.R.W.

                [* ]Correspondence: mrwarden@ 123456cornell.edu
                Article
                10.1101/2023.05.14.540716
                10461921
                37645786
                4fc720db-105f-4b3f-add5-c08e00432132

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

                History
                Categories
                Article

                serotonin,dorsal raphe,female,mating,ejaculation,calcium imaging,mechanosensory,chemosensory,sexual stimulation,interoception

                Comments

                Comment on this article