37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of the Regulation of the Intestinal Na +/H +Exchanger NHE3

      review-article
      1 , 1, 2 , *
      Journal of Biomedicine and Biotechnology
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A major of Na + absorptive process in the proximal part of intestine and kidney is electroneutral exchange of Na + and H + by Na +/H + exchanger type 3 (NHE3). During the past decade, significant advance has been achieved in the mechanisms of NHE3 regulation. A bulk of the current knowledge on Na +/H + exchanger regulation is based on heterologous expression of mammalian Na +/H + exchangers in Na +/H + exchanger deficient fibroblasts, renal epithelial, and intestinal epithelial cells. Based on the reductionist's approach, an understanding of NHE3 regulation has been greatly advanced. More recently, confirmations of in vitro studies have been made using animals deficient in one or more proteins but in some cases unexpected findings have emerged. The purpose of this paper is to provide a brief overview of recent progress in the regulation and functions of NHE3 present in the luminal membrane of the intestinal tract.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger.

          NHE3 is one of five plasma membrane Na+/H+ exchangers and is encoded by the mouse gene Slc9a3. It is expressed on apical membranes of renal proximal tubule and intestinal epithelial cells and is thought to play a major role in NaCl and HCO3- absorption. As the distribution of NHE3 overlaps with that of the NHE2 isoform in kidney and intestine, the function and relative importance of NHE3 in vivo is unclear. To analyse its physiological functions, we generated mice lacking NHE3 function. Homozygous mutant (Slc9a3-/-) mice survive, but they have slight diarrhoea and blood analysis revealed that they are mildly acidotic. HCO3- and fluid absorption are sharply reduced in proximal convoluted tubules, blood pressure is reduced and there is a severe absorptive defect in the intestine. Thus, compensatory mechanisms must limit gross perturbations of electrolyte and acid-base balance. Plasma aldosterone is increased in NHE3-deficient mice, and expression of both renin and the AE1 (Slc4a1) Cl-/HCO3- exchanger mRNAs are induced in kidney. In the colon, epithelial Na+ channel activity is increased and colonic H+,K+-ATPase mRNA is massively induced. These data show that NHE3 is the major absorptive Na+/H+ exchanger in kidney and intestine, and that lack of the exchanger impairs acid-base balance and Na+-fluid volume homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolutionary origins of eukaryotic sodium/proton exchangers.

            More than 200 genes annotated as Na+/H+ hydrogen exchangers (NHEs) currently reside in bioinformation databases such as GenBank and Pfam. We performed detailed phylogenetic analyses of these NHEs in an effort to better understand their specific functions and physiological roles. This analysis initially required examining the entire monovalent cation proton antiporter (CPA) superfamily that includes the CPA1, CPA2, and NaT-DC families of transporters, each of which has a unique set of bacterial ancestors. We have concluded that there are nine human NHE (or SLC9A) paralogs as well as two previously unknown human CPA2 genes, which we have named HsNHA1 and HsNHA2. The eukaryotic NHE family is composed of five phylogenetically distinct clades that differ in subcellular location, drug sensitivity, cation selectivity, and sequence length. The major subgroups are plasma membrane (recycling and resident) and intracellular (endosomal/TGN, NHE8-like, and plant vacuolar). HsNHE1, the first cloned eukaryotic NHE gene, belongs to the resident plasma membrane clade. The latter is the most recent to emerge, being found exclusively in vertebrates. In contrast, the intracellular clades are ubiquitously distributed and are likely precursors to the plasma membrane NHE. Yeast endosomal ScNHX1 was the first intracellular NHE to be described and is closely related to HsNHE6, HsNHE7, and HsNHE9 in humans. Our results link the appearance of NHE on the plasma membrane of animal cells to the use of the Na+/K(+)-ATPase to generate the membrane potential. These novel observations have allowed us to use comparative biology to predict physiological roles for the nine human NHE paralogs and to propose appropriate model organisms in which to study the unique properties of each NHE subclass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia.

              The existence of water-selective channels has been postulated to explain the high water permeability of erythrocytes and certain epithelial cells. The aquaporin CHIP (channel-forming integral membrane protein of 28 kDa), a molecular water channel, is abundant in erythrocytes and water-permeable segments of the nephron. To determine whether CHIP may mediate transmembrane water movement in other water-permeable epithelia, membranes of multiple organs were studied by immunoblotting, immunohistochemistry, and immunoelectron microscopy using affinity-purified anti-CHIP IgG. The apical membrane of the choroid plexus epithelium was densely stained, implying a role for CHIP in the secretion of cerebrospinal fluid. In the eye, CHIP was abundant in apical and basolateral domains of ciliary epithelium, the site of aqueous humor secretion, and also in lens epithelium and corneal endothelium. CHIP was detected in membranes of hepatic bile ducts and water-resorptive epithelium of gall bladder, suggesting a role in bile secretion and concentration. CHIP was not detected in glandular epithelium of mammary, salivary, or lacrimal glands, suggesting the existence of other water-channel isoforms. CHIP was also not detected within the epithelium of the gastrointestinal mucosa. CHIP was abundant in membranes of intestinal lacteals and continuous capillaries in diverse tissues, including cardiac and skeletal muscle, thus providing a molecular explanation for the known water permeability of certain lymphatics and capillary beds. These studies underscore the hypothesis that CHIP plays a major role in transcellular water movement throughout the body.
                Bookmark

                Author and article information

                Journal
                J Biomed Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2010
                25 November 2009
                : 2010
                : 238080
                Affiliations
                1Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
                2Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
                Author notes

                Academic Editor: Kenichiro Kitamura

                Article
                10.1155/2010/238080
                2789519
                20011065
                4fdfed58-b155-4302-9b19-02a0b07e33e6
                Copyright © 2010 P. He and C. C. Yun.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 July 2009
                : 11 September 2009
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article