1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fitness of unregulated human Ras mutants modeled by implementing computational mutagenesis and machine learning techniques

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ras proteins play a pivotal role as oncogenes by participating in diverse signaling events, including those linked to cell growth, differentiation, and proliferation. Using experimental fitness data and implementing artificial intelligence and a computational mutagenesis technique, we developed models that reliably predict fitness for all single residue mutants of H- ras proto-oncogene protein p21. The computational mutagenesis generated a feature vector of protein structural changes for each variant, and these data correlated well with fitness. Random forest classification and tree regression machine learning algorithms were implemented for training predictive models. Cross-validations were used to evaluate model performance, and control experiments were performed to assess statistical significance. Classification models revealed a balanced accuracy rate as high as 82%, with a Matthew's correlation of 0.63, and an area under ROC curve of 0.90. Similarly, regression models displayed Pearson's correlation reaching 0.79. On the other hand, control data sets led to performance values consistent with random guessing. Comparisons with several related state-of-the-art methods reflected favorably on our trained models. This H-Ras proof-of-principle study suggests a complementary approach for understanding mechanisms with which other proteins are involved in oncogenesis, including related Ras isoforms, and for providing useful insights into designing future diagnostic and treatment modalities.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          RAS Proteins and Their Regulators in Human Disease.

          RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PISCES: a protein sequence culling server.

            PISCES is a public server for culling sets of protein sequences from the Protein Data Bank (PDB) by sequence identity and structural quality criteria. PISCES can provide lists culled from the entire PDB or from lists of PDB entries or chains provided by the user. The sequence identities are obtained from PSI-BLAST alignments with position-specific substitution matrices derived from the non-redundant protein sequence database. PISCES therefore provides better lists than servers that use BLAST, which is unable to identify many relationships below 40% sequence identity and often overestimates sequence identity by aligning only well-conserved fragments. PDB sequences are updated weekly. PISCES can also cull non-PDB sequences provided by the user as a list of GenBank identifiers, a FASTA format file, or BLAST/PSI-BLAST output.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Data mining in bioinformatics using Weka.

              The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection-common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing methods complemented by graphical user interfaces for data exploration and the experimental comparison of different machine learning techniques on the same problem. Weka can process data given in the form of a single relational table. Its main objectives are to (a) assist users in extracting useful information from data and (b) enable them to easily identify a suitable algorithm for generating an accurate predictive model from it. http://www.cs.waikato.ac.nz/ml/weka.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                12 June 2019
                June 2019
                12 June 2019
                : 5
                : 6
                : e01884
                Affiliations
                [1]School of Systems Biology, George Mason University, 10900 University Blvd. MS 5B3, Manassas, Virginia, 20110, USA
                Author notes
                []Corresponding author. mmasso@ 123456gmu.edu
                [1]

                These authors contributed equally to this work.

                Article
                S2405-8440(19)31166-1 e01884
                10.1016/j.heliyon.2019.e01884
                6562371
                5028075b-c689-471e-b591-9619be078416
                © 2019 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 2 February 2019
                : 23 April 2019
                : 30 May 2019
                Categories
                Article

                bioinformatics,biophysics,cancer research,computational biology,systems biology

                Comments

                Comment on this article