1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antagonism and Antimicrobial Capacity of Epiphytic and Endophytic Bacteria against the Phytopathogen Xylella fastidiosa

      , , , , ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Olive quick decline syndrome (OQDS), which is caused by Xylella fastidiosa, poses a severe threat to the agriculture of Mediterranean countries and causes severe damage to the olive trees in Italy. Since no effective control measures are currently available, the objective of this study was the screening of antagonistic bacteria that are potentially deployable as biocontrol agents against X. fastidiosa. Therefore, two approaches were used, i.e., the evaluation of the antagonistic activity of (i) endophytic bacteria isolated from two different cultivars of olive trees (Leccino and Ogliarola salentina) and (ii) epiphytic bacteria isolated from the phyllospheres of different host plant species of X. fastidiosa. In vitro dual culture tests showed that 12 out of 200 isolates inhibited X. fastidiosa growth, with appearances of clear zones between 4.0 and 38.6 mm. 16S rRNA gene sequencing revealed different species of the genera Paenibacillus, Bacillus, Pantoea, Microbacterium, Stenotrophomonas, Delftia, and Pseudomonas. Furthermore, an investigation for antimicrobial activity identified 5 out of the 12 antagonistic bacteria, Paenibacillus rigui, Bacillus subtilis, Bacillus pumilus, Microbacterium oxydans, and Stenotrophomonas rhizophila, that were able to produce culture filtrates with inhibitory activities. Our results are promising for further investigation to develop an eco-sustainable strategy to control X. fastidiosa using biocontrol agents or their secreted metabolites.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial life in the phyllosphere.

          Our knowledge of the microbiology of the phyllosphere, or the aerial parts of plants, has historically lagged behind our knowledge of the microbiology of the rhizosphere, or the below-ground habitat of plants, particularly with respect to fundamental questions such as which microorganisms are present and what they do there. In recent years, however, this has begun to change. Cultivation-independent studies have revealed that a few bacterial phyla predominate in the phyllosphere of different plants and that plant factors are involved in shaping these phyllosphere communities, which feature specific adaptations and exhibit multipartite relationships both with host plants and among community members. Insights into the underlying structural principles of indigenous microbial phyllosphere populations will help us to develop a deeper understanding of the phyllosphere microbiota and will have applications in the promotion of plant growth and plant protection.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Microbiology of the Phyllosphere

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant growth-promoting bacterial endophytes.

              Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                June 2022
                May 25 2022
                : 12
                : 6
                : 1266
                Article
                10.3390/agronomy12061266
                5032940f-ee58-4728-89e8-749ee0ccaf14
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article