1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association between mortality risk levels and AIFELL triage scores for suspected COVID-19 patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND:

          It is crucial to examine and classify patients as soon as possible to save their lives when they display Coronavirus Disease of 2019 (COVID-19) symptoms. The Altered sense of smell/taste, Inflammation, Fever, Elevated Lactate dehydrogenase, and Lymphocytopenia (AIFELL) evaluation tool is quick, easy, and simple for medical professionals.

          OBJECTIVES:

          Determine the relationship between the COVID-19 patient confirmation and the AIFELL score. Examine any relationships between the AIFELL score and the degree of mortality.

          MATERIALS AND METHODS:

          A retrospective study was conducted on 970 hospitalized (18 years or older) with a COVID-19 diagnosis in 2021. Patients admitted to the intensive care unit (ICU) as critical cases and moderate cases. The Chi-square test was utilized.

          RESULTS:

          The scores of the AIFELL tool ranged from 0 to 6 points; the AIFELL score for COVID-19 symptoms with a high score (4–6) made up 41.5% of the patients. More than half of the patients (58.7%) were men; the oldest age group ranged from 40 to 50 years. A very high risk of dying due to a positive COVID-19 virus exists in more than a fifth of patients (21.5%). The ICU (37.5%) received around a third of the patients. The findings showed significant associations between levels of mortality risk and gender and age. There were significant associations between AIFELL scores and mortality risk levels. AIFELL scores, mortality risk levels, and patient admissions to the critical care unit were strongly associated.

          CONCLUSION:

          The AIFELL scores were excellent for predicting COVID-19 mortality risk levels and ICU admission.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China

          Dear Editor, The rapid emergence of COVID-19 in Wuhan city, Hubei Province, China, has resulted in thousands of deaths [1]. Many infected patients, however, presented mild flu-like symptoms and quickly recover [2]. To effectively prioritize resources for patients with the highest risk, we identified clinical predictors of mild and severe patient outcomes. Using the database of Jin Yin-tan Hospital and Tongji Hospital, we conducted a retrospective multicenter study of 68 death cases (68/150, 45%) and 82 discharged cases (82/150, 55%) with laboratory-confirmed infection of SARS-CoV-2. Patients met the discharge criteria if they had no fever for at least 3 days, significantly improved respiratory function, and had negative SARS-CoV-2 laboratory test results twice in succession. Case data included demographics, clinical characteristics, laboratory results, treatment options and outcomes. For statistical analysis, we represented continuous measurements as means (SDs) or as medians (IQRs) which compared with Student’s t test or the Mann–Whitney–Wilcoxon test. Categorical variables were expressed as numbers (%) and compared by the χ 2 test or Fisher’s exact test. The distribution of the enrolled patients’ age is shown in Fig. 1a. There was a significant difference in age between the death group and the discharge group (p < 0.001) but no difference in the sex ratio (p = 0.43). A total of 63% (43/68) of patients in the death group and 41% (34/82) in the discharge group had underlying diseases (p = 0.0069). It should be noted that patients with cardiovascular diseases have a significantly increased risk of death when they are infected with SARS-CoV-2 (p < 0.001). A total of 16% (11/68) of the patients in the death group had secondary infections, and 1% (1/82) of the patients in the discharge group had secondary infections (p = 0.0018). Laboratory results showed that there were significant differences in white blood cell counts, absolute values of lymphocytes, platelets, albumin, total bilirubin, blood urea nitrogen, blood creatinine, myoglobin, cardiac troponin, C-reactive protein (CRP) and interleukin-6 (IL-6) between the two groups (Fig. 1b and Supplementary Table 1). Fig. 1 a Age distribution of patients with confirmed COVID-19; b key laboratory parameters for the outcomes of patients with confirmed COVID-19; c interval from onset of symptom to death of patients with confirmed COVID-19; d summary of the cause of death of 68 died patients with confirmed COVID-19 The survival times of the enrolled patients in the death group were analyzed. The distribution of survival time from disease onset to death showed two peaks, with the first one at approximately 14 days (22 cases) and the second one at approximately 22 days (17 cases) (Fig. 1c). An analysis of the cause of death was performed. Among the 68 fatal cases, 36 patients (53%) died of respiratory failure, five patients (7%) with myocardial damage died of circulatory failure, 22 patients (33%) died of both, and five remaining died of an unknown cause (Fig. 1d). Based on the analysis of the clinical data, we confirmed that some patients died of fulminant myocarditis. In this study, we first reported that the infection of SARS-CoV-2 may cause fulminant myocarditis. Given that fulminant myocarditis is characterized by a rapid progress and a severe state of illness [3], our results should alert physicians to pay attention not only to the symptoms of respiratory dysfunction but also the symptoms of cardiac injury. Further, large-scale studies and the studies on autopsy are needed to confirm our analysis. In conclusion, predictors of a fatal outcome in COVID-19 cases included age, the presence of underlying diseases, the presence of secondary infection and elevated inflammatory indicators in the blood. The results obtained from this study also suggest that COVID-19 mortality might be due to virus-activated “cytokine storm syndrome” or fulminant myocarditis. Electronic supplementary material Below is the link to the electronic supplementary material. Supplementary material 1 (DOCX 38 kb)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Gender Differences in Patients With COVID-19: Focus on Severity and Mortality

            Objective: The recent outbreak of Novel Coronavirus Disease (COVID-19) is reminiscent of the SARS outbreak in 2003. We aim to compare the severity and mortality between male and female patients with COVID-19 or SARS. Study Design and Setting: We extracted the data from: (1) a case series of 43 hospitalized patients we treated, (2) a public data set of the first 37 cases of patients who died of COVID-19 and 1,019 patients who survived in China, and (3) data of 524 patients with SARS, including 139 deaths, from Beijing in early 2003. Results: Older age and a high number of comorbidities were associated with higher severity and mortality in patients with both COVID-19 and SARS. Age was comparable between men and women in all data sets. In the case series, however, men's cases tended to be more serious than women's (P = 0.035). In the public data set, the number of men who died from COVID-19 is 2.4 times that of women (70.3 vs. 29.7%, P = 0.016). In SARS patients, the gender role in mortality was also observed. The percentage of males were higher in the deceased group than in the survived group (P = 0.015). Conclusion: While men and women have the same prevalence, men with COVID-19 are more at risk for worse outcomes and death, independent of age.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COVID-19 Illness in Native and Immunosuppressed States: A Clinical-Therapeutic Staging Proposal

              The onslaught of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associated coronavirus disease 2019 (COVID-19) has gripped the world in a pandemic and challenged the culture, economy and healthcare infrastructure of its population. It has become increasingly important that health systems and their clinicians adopt a universal consolidated framework to recognize the staged progression of COVID-19 illness in order to deploy and investigate targeted therapy likely to save lives. The largest report of COVID-19 from the Chinese Centers for Disease Control and Prevention summarized findings from 72, 314 cases and noted that while 81% were of a mild nature with an overall case fatality rate of 2.3%, a small sub-group of 5% presented with respiratory failure, septic shock and multi-organ dysfunction resulting in fatality in half of such cases, a finding that suggests that it is within this group that the opportunity for life saving measures may be most pertinent. 1 Once the disease is manifest, supportive measures are initiated with quarantines; however a systematic disease modifying therapeutic approach remains empirical. Pharmacotherapy targeted against the virus holds the greatest promise when applied early in the course of the illness, but its usefulness in advanced stages may be doubtful. 2 , 3 Similarly, use of anti-inflammatory therapy applied too early may not be necessary and could even provoke viral replication such as in the case of corticosteroids. 4 It appears that there are two distinct but overlapping pathological subsets, the first triggered by the virus itself and the second, the host response. Whether in native state, immunoquiescent state as in the elderly, or immunosuppressed state as in heart transplantation, the disease tends to present and follow these two phases, albeit in different levels of severity. The early reports in heart transplantation suggest that symptom expression during the phase of establishment of infection are similar to non-immunosuppressed individuals; however, in limited series the second wave determined by the host-inflammatory response appears to be milder, possibly due to the concomitant use of immuno-modulatory drugs. 5 , 6 Similarly, an epidemiological study from Wuhan in a cohort of 87 patients suggests that precautionary measures of social distancing, sanitization and general hygiene allow heart transplant recipients to experience a low rate of COVID-19 illness. 7 We do not of course, know if they are asymptomatic carriers, since in this survey-based study universal testing during the early 3 months was not employed. One interesting fact in this study was that many heart transplant recipients have hematological changes of lymphopenia due to the effects of immunosuppressive therapy which may obfuscate the laboratory interpretation of infection in such patients should they get infected. Much confusion abounds in the therapeutic tactics employed in COVID-19. It is imperative that a structured approach to clinical phenotyping be undertaken to distinguish the phase where the viral pathogenicity is dominant versus when the host inflammatory response overtakes the pathology. In this editorial we propose a clinical staging system to establish a standardized nomenclature for uniform evaluation and reporting of this disease, to facilitate therapeutic application and evaluate response. We propose the use of a 3-stage classification system, recognizing that COVID-19 illness exhibits three grades of increasing severity which correspond with distinct clinical findings, response to therapy and clinical outcome (Figure ). Figure 1 Classification of COVID-19 Disease States and Potential Therapeutic Targets Figure 1 The figure shows 3 escalating phases of disease progression with COVID-19, with associated signs, symptoms and potential phase-specific therapies. ARDS = Acute respiratory distress syndrome; CRP = C-reactive protein; IL = Interleukin; JAK = Janus Kinase; LDH=Lactate DeHydrogenase; SIRS = Systemic inflammatory response syndrome. Stage I (mild) – Early Infection The initial stage occurs at the time of inoculation and early establishment of disease. For most people, this involves an incubation period associated with mild and often non-specific symptoms such as malaise, fever and a dry cough. During this period, SARS-CoV-2 multiplies and establishes residence in the host, primarily focusing on the respiratory system. Similar to its older relative, SARS-CoV (responsible for the 2002-2003 SARS outbreak), SARS-CoV-2 binds to its target using the angiotensin-converting enzyme 2 (ACE2) receptor on human cells. 8 These receptors are abundantly present on human lung and small intestine epithelium, as well as the vascular endothelium. As a result of the airborne method of transmission as well as affinity for pulmonary ACE2 receptors, the infection usually presents with mild respiratory and systemic symptoms. Diagnosis at this stage includes respiratory sample PCR, serum testing for SARS-CoV-2 IgG and IgM, along with chest imaging, complete blood count (CBC) and liver function tests. CBC may reveal a lymphopenia and neutrophilia without other significant abnormalities. Treatment at this stage is primarily targeted towards symptomatic relief. Should a viable anti-viral therapy (such as remdesivir) be proven beneficial, targeting selected patients during this stage may reduce duration of symptoms, minimize contagiousness and prevent progression of severity. In patients who can keep the virus limited to this stage of COVID-19, prognosis and recovery is excellent. Stage II (moderate) - Pulmonary Involvement (IIa) without and (IIb) with hypoxia In the second stage of established pulmonary disease, viral multiplication and localized inflammation in the lung is the norm. During this stage, patients develop a viral pneumonia, with cough, fever and possibly hypoxia (defined as a PaO2/FiO2 of <300 mmHg). Imaging with chest roentgenogram or computerized tomography reveals bilateral infiltrates or ground glass opacities. Blood tests reveal increasing lymphopenia, along with transaminitis. Markers of systemic inflammation may be elevated, but not remarkably so. It is at this stage that most patients with COVID-19 would need to be hospitalized for close observation and management. Treatment would primarily consist of supportive measures and available anti-viral therapies such as remdesivir (available under compassionate and trial use). It should be noted that serum procalcitonin is low to normal in most cases of COVID-19 pneumonia. In early stage II (without significant hypoxia), the use of corticosteroids in patients with COVID-19 may be avoided. 4 However, if hypoxia ensues, it is likely that patients will progress to requiring mechanical ventilation and in that situation, we believe that use of anti-inflammatory therapy such as with corticosteroids may be useful and can be judiciously employed. Thus, Stage II disease should be subdivided into Stage IIa (without hypoxia) and Stage IIb (with hypoxia). Stage III (severe) – Systemic Hyperinflammation A minority of COVID-19 patients will transition into the third and most severe stage of illness, which manifests as an extra-pulmonary systemic hyperinflammation syndrome. In this stage, markers of systemic inflammation appear to be elevated. COVID-19 infection results in a decrease in helper, suppressor and regulatory T cell counts. 9 Studies have shown that inflammatory cytokines and biomarkers such as interleukin (IL)-2, IL-6, IL-7, granulocyte-colony stimulating factor, macrophage inflammatory protein 1-α, tumor necrosis factor-α, C-reactive protein, ferritin, and D-dimer are significantly elevated in those patients with more severe disease. 10 Troponin and N-terminal pro B-type natriuretic peptide (NT-proBNP) can also be elevated. A form akin to hemophagocytic lymphohistiocytosis (sHLH) may occur in patients in this advanced stage of disease. 11 In this stage, shock, vasoplegia, respiratory failure and even cardiopulmonary collapse are discernable. Systemic organ involvement, even myocarditis, would manifest during this stage. Tailored therapy in stage III hinges on the use of immunomodulatory agents to reduce systemic inflammation before it overwhelmingly results in multi-organ dysfunction. In this phase, use of corticosteroids may be justified in concert with the use of cytokine inhibitors such as tocilizumab (IL-6 inhibitor) or anakinra (IL-1 receptor antagonist). 11 Intravenous immune globulin (IVIG) may also play a role in modulating an immune system that is in a hyperinflammatory state. Overall, the prognosis and recovery from this critical stage of illness is poor, and rapid recognition and deployment of such therapy may have the greatest yield. The first open-label randomized controlled clinical trial of antiviral therapy was recently reported. 3 In this study, 199 patients were randomly allocated to the antiviral agents lopinavir–ritonavir or to standard of care and this regimen was not found to be particularly effective. One reason for this may have been that the patients were enrolled during the pulmonary stage with hypoxia (stage IIb) when the viral pathogenicity may have been only one lesser dominant aspect of the overall pathophysiology, and host inflammatory responses were the predominant pathophysiology We believe that this proposed 3-stage classification system for COVID-19 illness will serve to develop a uniform scaffold to build structured therapeutic experience as healthcare systems globally are besieged by this crisis, in patients with or without transplantation. Disclosure Dr. Siddiqi has nothing to declare. Dr. Mehra reports no direct conflicts pertinent to the development of this paper. Other general conflicts include consulting relationships with Abbott, Medtronic, Janssen, Mesoblast, Portola, Bayer, NupulseCV, FineHeart, Leviticus and Triple Gene.
                Bookmark

                Author and article information

                Journal
                J Educ Health Promot
                J Educ Health Promot
                JEHP
                J Edu Health Promot
                Journal of Education and Health Promotion
                Wolters Kluwer - Medknow (India )
                2277-9531
                2319-6440
                2023
                22 January 2024
                : 12
                : 454
                Affiliations
                [1 ] Department of Sport Rehabilitation, Faculty of Physical Education and Sport Sciences, The Hashemite University, Zarqa, Jordan
                [2 ] Department of Adult Health Nursing, Faculty of Nursing, The Hashemite University, Zarqa, Jordan
                Author notes
                Address for correspondence: Dr. Moayad A. Wahsheh, Department of Sport Rehabilitation, Faculty of Physical Education and Sport Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan. E-mail: mamwahsheh@ 123456hu.edu.jo
                Article
                JEHP-12-454
                10.4103/jehp.jehp_604_23
                10920775
                38464647
                50b72e4c-d4ad-4588-a000-34a9c99105e3
                Copyright: © 2024 Journal of Education and Health Promotion

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 03 May 2023
                : 31 July 2023
                Categories
                Original Article

                4c mortality scores,aifell scores (triage tool),covid-19,icu admission,patients

                Comments

                Comment on this article