4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Platelet-Derived Growth Factor Receptor and Ionizing Radiation in High Grade Glioma Cell Lines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Treatment of high grade gliomas (HGGs) has remained elusive due to their high heterogeneity and aggressiveness. Surgery followed by radiotherapy represents the mainstay of treatment for HGG. However, the unfavorable location of the tumor that usually limits total resection and the resistance to radiation therapy are the major therapeutic problems. Chemotherapy with DNA alkylating agent temozolomide is also used to treat HGG, despite modest effects on survival. Disregulation of several growth factor receptors (GFRs) were detected in HGG and receptor amplification in glioblastoma has been suggested to be responsible for heterogeneity propagation through clonal evolution. Molecularly targeted agents inhibiting these membrane proteins have demonstrated significant cytotoxicity in several types of cancer cells when tested in preclinical models. Platelet-derived growth factor receptors (PDGFRs) and associated signaling were found to be implicated in gliomagenesis, moreover, HGG commonly display a Platelet-derived growth factor (PDGF) autocrine pathway that is not present in normal brain tissues. We have previously shown that both the susceptibility towards PDGFR and the impact of the PDGFR inactivation on the radiation response were different in different HGG cell lines. Therefore, we decided to extend our investigation, using two other HGG cell lines that express PDGFR at the cell surface. Here, we investigated the effect of PDGFR inhibition alone or in combination with gamma radiation in 11 and 15 HGG cell lines. Our results showed that while targeting the PDGFR represents a good means of treatment in HGG, the combination of receptor inhibition with gamma radiation did not result in any discernable difference compared to the single treatment. The PI3K/PTEN/Akt/mTOR and Ras/Raf/MEK/ERK pathways are the major signaling pathways emerging from the GFRs, including PDGFR. Decreased sensitivity to radiation-induced cell death are often associated with redundancy in these pro-survival signaling pathways. Here we found that Phosphoinositide 3-kinases (PI3K), Extracellular-signal-regulated kinase 1/2 (ERK1/2), or c-Jun N-terminal kinase 1/2 (JNK1/2) inactivation induced radiosensitivity in HGG cells.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor.

          The epidermal growth factor receptor (EGFR) autocrine pathway contributes to a number of processes important to cancer development and progression, including cell proliferation, apoptosis, angiogenesis, and metastatic spread. The critical role the EGFR plays in cancer has led to an extensive search for selective inhibitors of the EGFR signaling pathway. The results of a large body of preclinical studies and the early clinical trials thus far conducted suggest that targeting the EGFR could represent a significant contribution to cancer therapy. A variety of different approaches are currently being used to target the EGFR. The most promising strategies in clinical development include monoclonal antibodies to prevent ligand binding and small molecule inhibitors of the tyrosine kinase enzymatic activity to inhibit autophosphorylation and downstream intracellular signaling. At least five blocking monoclonal antibodies have been developed against the EGFR. Among these, IMC-225 is a chimeric human-mouse monoclonal IgG1 antibody that has been the first anti-EGFR targeted therapy to enter clinical evaluation in cancer patients in Phase II and III studies, alone or in combination with conventional therapies, such as radiotherapy and chemotherapy. A number of small molecule inhibitors of the EGFR tyrosine kinase enzymatic activity is also in development. OSI-774 and ZD1839 (Iressa) are currently in Phase II and III development, respectively. ZD1839, a p.o. active, selective quinazoline derivative has demonstrated promising in vitro and in vivo antitumor activity. Preliminary results from Phase I and II trials in patients with advanced disease demonstrate that ZD1839 and OSI-774 have an acceptable tolerability profile and promising clinical efficacy in patients with a variety of tumor types. This mini-review describes the EGFR inhibitors in clinical development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Combining Immunotherapy and Radiotherapy for Cancer Treatment: Current Challenges and Future Directions

            Since the approval of anti-CTLA4 therapy (ipilimumab) for late-stage melanoma in 2011, the development of anticancer immunotherapy agents has thrived. The success of many immune-checkpoint inhibitors has drastically changed the landscape of cancer treatment. For some types of cancer, monotherapy for targeting immune checkpoint pathways has proven more effective than traditional therapies, and combining immunotherapy with current treatment strategies may yield even better outcomes. Numerous preclinical studies have suggested that combining immunotherapy with radiotherapy could be a promising strategy for synergistic enhancement of treatment efficacy. Radiation delivered to the tumor site affects both tumor cells and surrounding stromal cells. Radiation-induced cancer cell damage exposes tumor-specific antigens that make them visible to immune surveillance and promotes the priming and activation of cytotoxic T cells. Radiation-induced modulation of the tumor microenvironment may also facilitate the recruitment and infiltration of immune cells. This unique relationship is the rationale for combining radiation with immune checkpoint blockade. Enhanced tumor recognition and immune cell targeting with checkpoint blockade may unleash the immune system to eliminate the cancer cells. However, challenges remain to be addressed to maximize the efficacy of this promising combination. Here we summarize the mechanisms of radiation and immune system interaction, and we discuss current challenges in radiation and immune checkpoint blockade therapy and possible future approaches to boost this combination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling.

              Neurons and oligodendrocytes are produced in the adult brain subventricular zone (SVZ) from neural stem cells (B cells), which express GFAP and have morphological properties of astrocytes. We report here on the identification B cells expressing the PDGFRalpha in the adult SVZ. Specifically labeled PDGFRalpha expressing B cells in vivo generate neurons and oligodendrocytes. Conditional ablation of PDGFRalpha in a subpopulation of postnatal stem cells showed that this receptor is required for oligodendrogenesis, but not neurogenesis. Infusion of PDGF alone was sufficient to arrest neuroblast production and induce SVZ B cell proliferation contributing to the generation of large hyperplasias with some features of gliomas. The work demonstrates that PDGFRalpha signaling occurs early in the adult stem cell lineage and may help regulate the balance between oligodendrocyte and neuron production. Excessive PDGF activation in the SVZ in stem cells is sufficient to induce hallmarks associated with early stages of tumor formation.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                20 September 2019
                October 2019
                : 20
                : 19
                : 4663
                Affiliations
                [1 ]Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
                [2 ]Department of Pharmacological Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
                [3 ]Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska University Hospital, Z1:00, 171 76 Stockholm, Sweden
                [4 ]Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
                [5 ]Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
                [6 ]Department of Neurosurgery, “Bagdasar-Arseni” Emergency Hospital, Soseaua Berceni 12, 041915 Bucharest, Romania
                Author notes
                [* ]Correspondence: ttranu@ 123456gmail.com (L.G.T.); anica.dricu@ 123456live.co.uk (A.D.); Tel.: +4-21-334-3025 (L.G.T.); +4-351-443-500 (A.D.)
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0003-1782-2783
                Article
                ijms-20-04663
                10.3390/ijms20194663
                6802357
                31547056
                50d1e698-1178-4cf4-9495-b728b6c6f1b1
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 August 2019
                : 19 September 2019
                Categories
                Article

                Molecular biology
                high grade glioma,radiotherapy,platelet-derived growth factor receptor (pdgfr)

                Comments

                Comment on this article