85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tuberculosis remains a fatal disease caused by Mycobacterium tuberculosis, which contains various unique components that affect the host immune system. Trehalose-6,6′-dimycolate (TDM; also called cord factor) is a mycobacterial cell wall glycolipid that is the most studied immunostimulatory component of M. tuberculosis. Despite five decades of research on TDM, its host receptor has not been clearly identified. Here, we demonstrate that macrophage inducible C-type lectin (Mincle) is an essential receptor for TDM. Heat-killed mycobacteria activated Mincle-expressing cells, but the activity was lost upon delipidation of the bacteria; analysis of the lipid extracts identified TDM as a Mincle ligand. TDM activated macrophages to produce inflammatory cytokines and nitric oxide, which are completely suppressed in Mincle-deficient macrophages. In vivo TDM administration induced a robust elevation of inflammatory cytokines in sera and characteristic lung inflammation, such as granuloma formation. However, no TDM-induced lung granuloma was formed in Mincle-deficient mice. Whole mycobacteria were able to activate macrophages even in MyD88-deficient background, but the activation was significantly diminished in Mincle/MyD88 double-deficient macrophages. These results demonstrate that Mincle is an essential receptor for the mycobacterial glycolipid, TDM.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Mycobacteria Target DC-SIGN to Suppress Dendritic Cell Function

          Mycobacterium tuberculosis represents a world-wide health risk and immunosuppression is a particular problem in M. tuberculosis infections. Although macrophages are primarily infected, dendritic cells (DCs) are important in inducing cellular immune responses against M. tuberculosis. We hypothesized that DCs represent a target for M. tuberculosis and that the observed immuno-suppression results from modulation of DC functions. We demonstrate that the DC-specific C-type lectin DC-SIGN is an important receptor on DCs that captures and internalizes intact Mycobacterium bovis bacillus Calmette-Guérin (BCG) through the mycobacterial cell wall component ManLAM. Antibodies against DC-SIGN block M. bovis BCG infection of DCs. ManLAM is also secreted by M. tuberculosis–infected macrophages and has been implicated as a virulence factor. Strikingly, ManLAM binding to DC-SIGN prevents mycobacteria- or LPS-induced DC maturation. Both mycobacteria and LPS induce DC maturation through Toll-like receptor (TLR) signaling, suggesting that DC-SIGN, upon binding of ManLAM, interferes with TLR-mediated signals. Blocking antibodies against DC-SIGN reverse the ManLAM-mediated immunosuppressive effects. Our results suggest that M. tuberculosis targets DC-SIGN both to infect DCs and to down-regulate DC-mediated immune responses. Moreover, we demonstrate that DC-SIGN has a broader pathogen recognition profile than previously shown, suggesting that DC-SIGN may represent a molecular target for clinical intervention in infections other than HIV-1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mincle is an ITAM-coupled activating receptor that senses damaged cells.

            Macrophage-inducible C-type lectin (Mincle) is expressed mainly in macrophages and is induced after exposure to various stimuli and stresses. Here we show that Mincle selectively associated with the Fc receptor common gamma-chain and activated macrophages to produce inflammatory cytokines and chemokines. Mincle-expressing cells were activated in the presence of dead cells, and we identified SAP130, a component of small nuclear ribonucloprotein, as a Mincle ligand that is released from dead cells. To investigate whether Mincle is required for normal responses to cell death in vivo, we induced thymocyte death by irradiating mice and found that transient infiltration of neutrophils into the thymus could be blocked by injection of Mincle-specific antibody. Our results suggest that Mincle is a receptor that senses nonhomeostatic cell death and thereby induces the production of inflammatory cytokines to drive the infiltration of neutrophils into damaged tissue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia.

              Mincle (also called as Clec4e and Clecsf9) is a C-type lectin receptor expressed in activated phagocytes. Recently, we have demonstrated that Mincle is an FcRgamma-associated activating receptor that senses damaged cells. To search an exogenous ligand(s), we screened pathogenic fungi using cell line expressing Mincle, FcRgamma, and NFAT-GFP reporter. We found that Mincle specifically recognizes the Malassezia species among 50 different fungal species tested. Malassezia is a pathogenic fungus that causes skin diseases, such as tinea versicolor and atopic dermatitis, and fatal sepsis. However, the specific receptor on host cells has not been identified. Mutation of the putative mannose-binding motif within C-type lectin domain of Mincle abrogated Malassezia recognition. Analyses of glycoconjugate microarray revealed that Mincle selectively binds to alpha-mannose but not mannan. Thus, Mincle may recognize specific geometry of alpha-mannosyl residues on Malassezia species and use this to distinguish them from other fungi. Malassezia activated macrophages to produce inflammatory cytokines/chemokines. To elucidate the physiological function of Mincle, Mincle-deficient mice were established. Malassezia-induced cytokine/chemokine production by macrophages from Mincle(-/-) mice was significantly impaired. In vivo inflammatory responses against Malassezia was also impaired in Mincle(-/-) mice. These results indicate that Mincle is the first specific receptor for Malassezia species to be reported and plays a crucial role in immune responses to this fungus.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                21 December 2009
                : 206
                : 13
                : 2879-2888
                Affiliations
                [1 ]Division of Molecular Immunology , [2 ]Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
                [3 ]Cell Signaling, Chiba University School of Medicine, Chiba 260-8670, Japan
                [4 ]Department of Immunoregulation , [5 ]Department of Host Defense, Research Institute for Microbial Diseases , [6 ]Laboratory of Immunoglycobiology , [7 ]Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
                Author notes
                CORRESPONDENCE Sho Yamasaki: yamasaki@ 123456bioreg.kyushu-u.ac.jp

                E. Ishikawa and T. Ishikawa contributed equally to this work.

                Article
                20091750
                10.1084/jem.20091750
                2806462
                20008526
                50ebe031-896a-4aaa-9942-9160b5a971d6
                © 2009 Ishikawa et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jem.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 12 August 2009
                : 3 November 2009
                Categories
                Brief Definitive Report

                Medicine
                Medicine

                Comments

                Comment on this article