21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome

      Nature genetics
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex.

          The mechanisms that regulate regional specification and evolution of the cerebral cortex are obscure. To this end, we have identified and characterized a novel murine and human gene encoding a putative transcription factor related to the Brachyury (T) gene that is expressed only in postmitotic cells. T-brain-1 (Tbr-1) mRNA is largely restricted to the cerebral cortex, where during embryogenesis it distinguishes domains that we propose may give rise to paleocortex, limbic cortex, and neocortex. Tbr-1 and Id-2 expression in the neocortex have discontinuities that define molecularly distinct neocortical areas. Tbr-1 expression is analyzed in the context of the prosomeric model. Topological maps are proposed for the organization of the dorsal telencephalon.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome)

            The Holt-Oram syndrome is an autosomal dominant condition characterized by skeletal abnormalities that are frequently accompanied by congenital cardiac defects. The cause of these disparate clinical features is unknown. To identify the chromosomal location of the Holt-Oram syndrome gene, we performed clinical and genetic studies. Two large families with the Holt-Oram syndrome were evaluated by radiography of the hands, electrocardiography, and transthoracic echocardiography. Genetic-linkage analyses were performed with polymorphic DNA loci dispersed throughout the genome to identify a locus that was inherited with the Holt-Oram syndrome in family members. A total of 19 members of Family A had Holt-Oram syndrome with mild-to-moderate skeletal deformities, including triphalangeal thumbs and carpal-bone dysmorphism. All affected members of Family A had moderate-to-severe congenital cardiac abnormalities, such as ventricular or atrial septal defects or atrioventricular-canal defects. Eighteen members of a second kindred (Family B) had Holt-Oram syndrome with moderate-to-severe skeletal deformities, including phocomelia. Twelve of the affected members had no cardiac defects; six had only atrial septal defects. Genetic analyses demonstrated linkage of the disease in each family to polymorphic loci on the long arm of chromosome 12 (combined multipoint lod score, 16.8). These data suggest odds greater than 10(16):1 that the genetic defect for Holt-Oram syndrome is present on the long arm of chromosome 12 (12q2). Mutations in a gene on chromosome 12q2 can produce a wide range of disease phenotypes characteristic of the Holt-Oram syndrome. This gene has an important role in both skeletal and cardiac development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation.

              The T-box genes constitute an evolutionarily conserved family of putative transcription factors which are expressed in discrete domains during embryogenesis, suggesting that they may play roles in inductive interactions. Members have been identified by virtue of their homology to the prototypical T-box gene, T or Brachyury, which is required for mesoderm formation and axial elongation during embryogenesis. We have previously reported the discovery of six new mouse T-box genes, Tbx1-Tbx6, and described the expression patterns of Tbx1-Tbx5 (Bollag et al., 1994; Agulnik et al., 1996; Chapman et al., 1996; Gibson-Brown et al., 1996). We have obtained cDNA clones encoding the full-length Tbx6 protein from screens of gastrulation-stage mouse cDNA libraries and determined the spatial and temporal distribution of Tbx6 transcripts during embryogenesis. The gene codes for a 1.9-kb transcript with an open reading frame coding for a 540-amino acid protein, with a predicted molecular weight of 59 kDa. Tbx6 maps to chromosome 7 and does not appear to be linked to any known mutation. Unlike other members of the mouse T-box gene family which are expressed in a wide variety of tissues derived from all germ layers, Tbx6 expression is quite restricted. Tbx6 transcripts are first detected in the gastrulation stage embryo in the primitive streak and newly recruited paraxial mesoderm. Later in development, Tbx6 expression is restricted to presomitic, paraxial mesoderm and to the tail bud, which replaces the streak as the source of mesoderm. Expression in the tail bud persists until 12. 5 days postcoitus. Tbx6 expression thus overlaps that of Brachyury in the primitive streak and tail bud, although Brachyury is expressed earlier in the primitive streak. Brachyury is also expressed in a second domain, the node and notochord, that is not shared with Tbx6. The onset of Tbx6 expression is not affected in homozygous null Brachyury mutant embryos at 7.5 days postcoitus. However, Tbx6 expression is extinguished in mutant embryos as soon as the Brachyury phenotype becomes evident at 8.5 days postcoitus, indicating that the continued expression of Tbx6 is directly or indirectly dependent upon Brachyury expression.
                Bookmark

                Author and article information

                Journal
                10.1038/ng0797-311
                9207801
                http://www.springer.com/tdm

                Comments

                Comment on this article