7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ca2+ buffering function of sarcoplasmic reticulum in rat tail arteries: comparison in normotensive and spontaneously hypertensive rats.

      Japanese journal of pharmacology
      Animals, Arteries, drug effects, metabolism, Calcium, Enzyme Inhibitors, pharmacology, Indoles, Male, Rats, Rats, Inbred SHR, Rats, Inbred WKY, Ryanodine, Sarcoplasmic Reticulum, Tail, blood supply, Thapsigargin, Vasoconstriction, physiology

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The superficial buffer barrier function of the sarcoplasmic reticulum (SR) during rest and that during stimulation with Bay k 8644, an agonist of L-type Ca2+ channels, were compared in endothelium-denuded strips of tail arteries from 13-week-old normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), by measuring the effects of cyclopiazonic acid (CPA) and thapsigargin that inhibit SR Ca2+-ATPase and the effect of ryanodine that depletes SR Ca2+. The addition of 10 microM CPA induced a transient contraction that was not significantly different between WKY and SHR. The CPA-induced contraction was strongly inhibited by 100 nM nifedipine and was abolished by Ca2+-free solution in both strains. Thapsigargin (100 nM) or ryanodine (10 microM) induced similar, small transient contractions in the two strains. The addition of Bay k 8644 (1-100 nM) almost failed to induce a contraction in both WKY and SHR. When the strips were preincubated with 10 microM CPA, 100 nM thapsigargin or 10 microM ryanodine, Bay k 8644 induced similar concentration-dependent contractions in the two strains. The amount of Ca2+ stored in the SR, as estimated from the 20 mM caffeine-induced contraction, was not significantly different between WKY and SHR. Our results suggest that the SR of rat tail arteries can buffer a large amount of Ca2+ that enters the cell during the rest and the Bay k 8644 stimulation, and these functions are not altered in SHR.

          Related collections

          Author and article information

          Comments

          Comment on this article