+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The NRF2/KEAP1 pathway is a fundamental signaling cascade that controls multiple cytoprotective responses through the induction of a complex transcriptional program that ultimately renders cancer cells resistant to oxidative, metabolic and therapeutic stress. Interestingly, accumulating evidence in recent years has indicated that metabolic reprogramming is closely interrelated with the regulation of redox homeostasis, suggesting that the disruption of NRF2 signaling might represent a valid therapeutic strategy against a variety of solid and hematologic cancers. These aspects will be the focus of the present review.

          Related collections

          Most cited references 120

          • Record: found
          • Abstract: found
          • Article: not found

          The thioredoxin antioxidant system.

           Arne Holmgren,  Jun Lu (2013)
          The thioredoxin (Trx) system, which is composed of NADPH, thioredoxin reductase (TrxR), and thioredoxin, is a key antioxidant system in defense against oxidative stress through its disulfide reductase activity regulating protein dithiol/disulfide balance. The Trx system provides the electrons to thiol-dependent peroxidases (peroxiredoxins) to remove reactive oxygen and nitrogen species with a fast reaction rate. Trx antioxidant functions are also shown by involvement in DNA and protein repair by reducing ribonucleotide reductase, methionine sulfoxide reductases, and regulating the activity of many redox-sensitive transcription factors. Moreover, Trx systems play critical roles in the immune response, virus infection, and cell death via interaction with thioredoxin-interacting protein. In mammalian cells, the cytosolic and mitochondrial Trx systems, in which TrxRs are high molecular weight selenoenzymes, together with the glutathione-glutaredoxin (Grx) system (NADPH, glutathione reductase, GSH, and Grx) control the cellular redox environment. Recently mammalian thioredoxin and glutathione systems have been found to be able to provide the electrons crossly and to serve as a backup system for each other. In contrast, bacteria TrxRs are low molecular weight enzymes with a structure and reaction mechanism distinct from mammalian TrxR. Many bacterial species possess specific thiol-dependent antioxidant systems, and the significance of the Trx system in the defense against oxidative stress is different. Particularly, the absence of a GSH-Grx system in some pathogenic bacteria such as Helicobacter pylori, Mycobacterium tuberculosis, and Staphylococcus aureus makes the bacterial Trx system essential for survival under oxidative stress. This provides an opportunity to kill these bacteria by targeting the TrxR-Trx system. Copyright © 2013 Elsevier Inc. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            NRF2 and the Hallmarks of Cancer

            The transcription factor NRF2 is the master regulator of the cellular antioxidant response. Though recognized originally as a target of chemopreventive compounds that help prevent cancer and other maladies, accumulating evidence has established the NRF2 pathway as a driver of cancer progression, metastasis, and resistance to therapy. Recent studies have identified new functions for NRF2 in the regulation of metabolism and other essential cellular functions, establishing NRF2 as a truly pleiotropic transcription factor. In this review, we explore the roles of NRF2 in the hallmarks of cancer, indicating both tumor suppressive and tumor-promoting effects.
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region.

              Hypersensitive site 2 located in the beta-globin locus control region confers high levels of expression to the genes of the beta-globin cluster. A tandem repeat of the consensus sequence for the transcription factors AP1 and NF-E2 (activating protein 1 and nuclear factor erythroid 2, respectively) is present within hypersensitive site 2 and is absolutely required for strong enhancer activity. This sequence binds, in vitro and in vivo, to ubiquitous proteins of the AP1 family and to the recently cloned erythroid-specific transcription factor NF-E2. Using the tandem repeat as a recognition site probe to screen a lambda gt11 cDNA expression library from K562 cells, we isolated several DNA binding proteins. Here, we report the characterization of one of the clones isolated. The gene, which we named Nrf2 (NF-E2-related factor 2), is encoded within a 2.2-kb transcript and predicts a 66-kDa protein with a basic leucine zipper DNA binding domain highly homologous to that of NF-E2. Although Nrf2 is expressed ubiquitously, a role of this protein in mediating enhancer activity of hypersensitive site 2 in erythroid cells cannot be excluded. In this respect, Nrf2 contains a powerful acidic activation domain that may participate in the transcriptional stimulation of beta-globin genes.

                Author and article information

                20 May 2020
                May 2020
                : 10
                : 5
                [1 ]Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
                [2 ]Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, 06520 Balgat, Ankara, Turkey; pelinta@ 123456yiu.edu.tr
                [3 ]Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Tandogan, Ankara, Turkey; sibel.suzen@ 123456pharmacy.ankara.edu.tr
                Author notes
                [* ]Correspondence: emiliano.panieri@ 123456hotmail.it (E.P.); luciano.saso@ 123456uniroma1.it (L.S.); Tel.: +39-06-4991-2481 (E.P. & L.S.)
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).



                Comment on this article