Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease. To elucidate the molecular basis of NAFLD we performed an exome-wide association study of liver fat content. Three variants were associated with increased liver fat at the exome-wide significance level: two in PNPLA3, an established locus for NAFLD, and one (Glu167Lys) in TM6SF2, a gene of unknown function. The Glu167LysTM6SF2 variant was also associated with higher circulating levels of alanine transaminase, a marker of liver injury, and lower levels of LDL-cholesterol, triglycerides and alkaline phosphatase in 3 independent populations (n>80,000). Recombinant Glu167LysTM6SF2 produced 50% less protein than wild-type TM6SF2 when expressed in cultured hepatocytes. Adeno-associated virus-mediated shRNA knockdown of Tm6sf2 in mice increased liver triglyceride content 3-fold and decreased VLDL secretion by 50%. Taken together, these data indicate that TM6SF2 activity is required for normal VLDL secretion, and that impaired TM6SF2 function causally contributes to NAFLD.